2023 IEEE 28th International Conference on Emerging Technologies and Factory Automation (ETFA) | 979-8-3503-3991-8/23/$31.00 ©2023 IEEE | DOI: 10.1109/ETFA54631.2023.10275633

Generating Portable Test Cases for IEC 61499 FBs
from Interface Behaviour Specifications

Bianca Wiesmayr*, Midhun Xavier!, Sandeep Patilf, Alois Zoitl*¥, Valeriy Vyatkin'$
*LIT CPS Lab, Johannes Kepler University Linz, Austria
TDepartment of Computer Science, Computer and Space Engineering, Lulea Tekniska Universitet, Sweden
tcpL VaSiCS, Johannes Kepler University Linz, Austria
§Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
Email: bianca.wiesmayr @jku.at, midhun.xavier @Itu.se, sandeep.patil@ltu.se, alois.zoitl@jku.at, vyatkin@ieee.org

Abstract—IEC 61499 is an executable, event-based language
for control software that allows visual and textual implementation
of individual software components (Function Blocks, FBs). The
standardized visual service sequence model specifies the expected
input/output behaviour of a component, thus supporting model-
based testing. We present our approach for testing an FB on
various platforms, which helps manage the variations in execution
semantics between different vendors. First, service sequences
are generated manually or derived from an existing (partial)
implementation. Then, these service sequences serve as unit tests
for this implementation. Finally, we create a test application that
is executable on any IEC 61499-compliant platform. Executing
tests directly in the target platform helps validate the correct
functionality of an FB before deploying the control software to
a cyber-physical system.

Index Terms—Model-Based Testing, IEC 61499, Function
Blocks, Service Sequences, Portability

I. INTRODUCTION

In industrial settings, Programmable Logic Controllers
(PLCs) coordinate mechatronic components, each equipped
with a control program. Interactions between the individual
programs form an emergent system, i.e., a distributed control
system. However, current control systems are highly depen-
dent on specific vendors, hindering the transfer of programs
between different platforms. As seamless integration is a
key requirement in the context of Industry 4.0, this lack of
interoperability poses great challenges.

The IEC 61499 standard [1] addresses the issues of vendor
lock-in and offers a solution by providing a framework for
developing portable and interoperable software. Although the
file exchange format is standardised, it is currently interpreted
differently and the execution semantics varies among vendors
[2], [3]. As a result, migrating programs from one IEC 61499
platform to another, and thus executing them in a different run-
time environment (RTE), may introduce errors that are difficult
to detect but could lead to damage to humans or the physical
equipment [4]. Therefore, it is crucial to thoroughly test an IEC
61499 application on the target platform before deploying it to
a real-world system. A platform-independent test specification
has the potential to greatly reduce the involved effort.

This work has received funding from the European Union’s 1-SWARM
project under grant agreement 871743.

Unit testing is a fundamental approach in software testing,
which evaluates the implementation of a piece of software [5]
to ensure its reliability. In IEC 61499, executing a test requires
providing event and data signals. For control engineers who
develop Function Blocks (FBs), it can be challenging to
manually create a test FB and the required test application
for observing the results. Model-based testing can reduce
the manual effort and also supports a “test first and fail”
methodology, known as Test-Driven Development (TDD) [6],
which is widely used in agile software engineering.

Previous work showed the feasibility of using service se-
quences as test specifications [6], [7]. Existing testing mech-
anisms require dedicated tool support and cannot be directly
transferred to other platforms. The portability of IEC 61499
software allows migrating applications to other IEC 61499
vendor platforms, but ensuring that a program behaves consis-
tently across RTEs remains an open challenge. In this paper,
we therefore present our approach for testing FBs that allows
to execute tests on any IEC 61499-compliant RTE. Based on
test scenarios that are created as a service sequence model,
we generate the corresponding test application. Realised as a
composite FB, the test application is portable across various
IEC 61499 platforms and allows for validating the correct
functionality before deployment in real-world machinery. We
present an example (Section III), the methodology (Section IV)
and our proof-of-concept implementation (Section V).

II. STATE OF THE ART

Developers can apply various testing strategies prior to de-
ploying an application. They can be differentiated based on the
involved software activities (e.g., unit tests or integration tests),
the maturity of the software, and the degree of automation [5].

Simulation techniques such as visualisations or Digital
Twins are commonly employed to assess whether a control
application operates according to the intended logic. However,
relying on a simulation does not ensure correctness, as some
malfunctions may occur only on a PLC. Finally, simulations
can also aid in comprehending the system’s behaviour.

The approach presented in [4] for creating a test suite with
IEC 61499 FBs allows systematically evaluating the portability
between RTEs. In this paper, we adapt this concept to test FBs
in a platform-independent test application.

Authorized licensed use limited to: Lulea University of Technology. Downloaded on March 12,2024 at 14:42:04 UTC from |IEEE Xplore. Restrictions apply.

Like testing, formal verification can be used to enhance
the system’s reliability by checking various properties. Formal
verification does not require any RTE. Sinha et al. [8] pro-
vide an overview of formal methods for IEC 61499. Formal
verification may uncover errors that do not occur during
simulations, thus, identifying certain undesirable situations.
Verification and testing can complement each other [9]. During
the development, tests provide an early feedback, even if
the model is still incomplete. Furthermore, errors that are
introduced by the compiler may lead to runtime issues, but
might not be revealed by formal methods.

A. Test Strategies for Unit and Functional Testing

Verification techniques and many testing strategies are em-
ployed after developing the control program. To mitigate errors
and fulfil the requirements of each FB, it can be beneficial to
integrate testing approaches already into the system design
phase (e.g., TDD). Unit testing ensures that each FB meets its
specified requirements. After developing the control program
for the entire system, functional testing can be conducted. This
involves assessing the control system by providing input data
and verifying the output against expected results. Two distinct
testing strategies can be applied. Their integration into the IEC
61499 development is covered in the next sections.

1) Approach A: Manually Create Test FBs: Previous work
has demonstrated an approach for manually creating test FBs
[4] for an IEC 61499 FB with control logic. These test FBs
encompass multiple test scenarios and embed the control logic.
The expected result is compared with the result obtained from
executing the control logic. A test FB is implemented as a
Basic FB with event and data pins. Each input event represents
a test scenario linked to specific data inputs, while output
events indicate the expected result and corresponding data
outputs. When a test scenario is triggered, the state diagram
(i.e., Execution Control Chart, ECC) executes an algorithm
that assigns input values, generates outputs based on those
values, and triggers the output event.

2) Approach B: Automatically Generate Test FBs from
Specification Models: Tools should support engineers in spec-
ifying test cases to reduce the required software engineering
knowledge and increase efficiency [6]. Model-based testing
involves automating at least part of the testing activities. For
IEC 61499 FBs, service sequences are suitable for specifying
tests [6]. A test runner can execute these tests in an RTE and
automatically evaluate the results [6]. Additionally, executing
models directly can allow feedback without involving any RTE
and is also feasible for service sequences [7]. The former
approach requires specific tool support for a certain RTE,
the latter cannot provide feedback regarding issues introduced
in the deployment to an RTE. Our approach builds upon
these works. As an alternative to service sequences, UML
models have been used as test specifications [9]. From a state-
based model, test cases can be derived using coverage-driven
algorithms [9]. Using an evolutionary algorithm, test cases
with a high coverage were generated directly from the FB
model in [10]. Test case generation can augment our approach,

which focuses on executing tests of any source on multiple
platforms. Additional tool support would be however required
to use other kinds of test specifications.

B. Identified Issues Regarding Platform Independence

Two major problems are associated with distributed control
software that spans multiple platforms: (i) The lack of au-
tomated tool support for RTE comparison makes comparing
the behaviour and performance of FBs across different RTEs
a challenging task. Currently, manual comparison is time-
consuming and error-prone. Dedicated tools should analyse
and evaluate the behaviour of FBs in different RTEs to ensure
accurate comparison.

(i1) Software development for different RTEs is challenging
because the compatibility and portability of an FB across
different RTEs cannot be assumed. For example, if an FB
is initially developed and tested on one RTE, such as NXT
EcoRT, there might be a need to reuse that FB in another
project in a different RTE, such as 4diac FORTE. Differences
in RTE behaviour, programming languages, and underlying
architectures can cause compatibility issues and hinder the
seamless transfer of FBs between different RTEs.

III. RUNNING EXAMPLE: SIMPLE CALCULATION FB

Our running example (Fig. 1) is an alternative addition FB
that calculates the output based on the inputs according to the
formula DO1:=DI1+2+DI2, with the following elements:

o Input event REQ triggers the calculation.

e Data inputs DI1, DI2 are used for the calculation. They
receive values from external sources or other FBs.

Data output DO1 stores the result of the calculation
performed by the FB.

o Output event CNF is issued to indicate the completion of
the algorithm execution and the availability of the result.
Sending this event indicates that the output result is ready
to be used or transmitted to other FBs.

Algorithm REQ within the FB is executed when the input
event REQ occurs. It performs the calculation using the
input variables DI1 and DI2.

Interface Implementation
LREQ ONF REQ[DI1 »>= 1 AND-DI1 <= 1088]
TieicalcFB
1.0 START 4———1—gale — REQ CHNF

#DbI1 DO1 ALGORITHM REQ
=DI2 DO1 := DI1 + INT#2 * DI2j
END_ALGORTTHM

Test Scenarios

T test1l START

(DI1:=INT#S;

RE
DI2:=INT#7;) Q
(DO1:=INT#19;) CNF

v test?2 START

REQ ‘>+

Figure 1. Running Example: FB performing simple calculation. FB interface
defining the component, implementation as state diagram, and two usage
scenarios modelled as service sequences.

(DI1:=INT#1@01;
DI2:=INT#7)

Authorized licensed use limited to: Lulea University of Technology. Downloaded on March 12,2024 at 14:42:04 UTC from |IEEE Xplore. Restrictions apply.

(1) Create a (2) Specify (3) Implement
New FB Type Test Cases Functionality
=REQ CNF
H@FbUT_Adder‘f STARTY
1.0

< RE
| REQ 1 a Q
=DI1 Do1 calc — REQ CNF
D12 CHNF

DO1:=DI1+DI2;

(4) Generate
Test FB from

(6) Execute
Tests on All

(5) Generate
Composite FB

ftest1_TEST testl_REQ R eI 12 FB Transaction: 1 Output EO
Ftest2_TEST test2 REQ der_ TEST WrbuT_Adderf fen1 _ £o1j
g = = o oo s [= Event Occurrence E_PERMITEI
(8] FbUT_Adder_TEST o o & Event OccurrenpasbsBBRi TEQ
11 25 FB Transaction: 1 Qhugp
& Event Occurren Lcu

DI2

o1 B Event Occumence £_CTU.CUO

Figure 2. Overview of process for testing FBs across various software platforms.

In our example, the FB performs the calculation if the values
of DI1 and DI2 are between 1 and 1000 (cf. state diagram
in Fig. 1). When triggering the REQ event with appropriate
input values, the FB executes the algorithm and produces the
respective output.

In the running example, a service model is provided to
define the test scenarios for the FB (cf. Fig. 1). The service
model specifies the expected event occurrences, as well as the
input values (DI1 and DI2) and the expected output value
(DO1) for each test case. Let us discuss the two test scenarios,
testl and test2. The scenario of test1 is triggered upon
arrival of an event at the input REQ. The purpose of testl
is to verify the FB behaviour by checking whether it correctly
returns 19 when given input values of 5 and 7. Similarly,
test2 aims to verify the FB behaviour for an edge case,
as one value will be out of range (i.e., DI2:=INT#1001).
We expect that no addition is performed, and no output events
are sent (cf. second sequence in Fig. 1). In both test cases, the
expected output value is explicitly specified. By comparing the
actual output with the expected output for each test case, the
implemented FB behavior can be evaluated.

IV. PROPOSED METHODOLOGY FOR TESTING FBSs

Our proposed approach consists of several steps regarding
creating test cases, generating test applications, and executing
a test application on various RTEs (cf. Fig. 2). Detailed
transformation rules will be described in the next section.

1) Create a New Function Block Type (FBT): The FB
implements the desired functionality. This involves specifying
the input/output events and data inputs/outputs. Unless the
developer adheres to a TDD process, the internal behaviour
of the FB is implemented as well.

2) Specify Test Cases as Service Sequence Models: Models
are specified manually or with tool support. Manually defining
service sequences allows a TDD process. Either the standard-
ised XML is edited directly, or graphical editors are used. For
existing implementations, using a model execution framework
allows recording service sequences with tool support as de-
scribed in [7]. Recorded tests can serve as regression tests, as
they capture the actual behaviour of an executed FB.

3) Implement Functionality: When following a TDD pro-
cess, the functionality of the FB is implemented at this stage.
The specified tests can be used for evaluating the correctness.

4) Generate Test FB from FB Type Specification: An
IEC 64199-compliant test application can be ported to various
RTEs. Based on the specification of the FB under test, and

the information provided by the service models, a test FB is
generated. This test FB incorporates the expected results of
the FB under test and is configured to execute the specified
test cases upon receiving a trigger event.

5) Generate Composite FB to Evaluate Results: This FB
connects the test FB of step 4 with the FB under test.
Additional FBs can capture the results for each test case.

6) Execute Tests in All Relevant RTEs: The generated
test application (i.e., the composite FB), is deployed to and
executed on different RTEs. The behaviour and output results
of the FB in each RTE are evaluated.

Sophisticated tool support can automate a large part of the
process, especially regarding the steps 4 to 6. By following
this methodology, control engineers can effectively test new
FBs. The systematic approach ensures that FBs are thoroughly
tested for functionality and compatibility across various RTEs.

V. IMPLEMENTATION

Based on the instructions provided in [4], we derived
transformation rules for automatically generating test FBs.
Then, we implemented these rules as a proof-of-concept in
an IDE for IEC 61499-software.

A. Transformation Rules

The test FB for the platform-independent test application
is created according to the following initial set of guidelines.
We will explain each transformation rule for constructing the
test FB in detail, while referring to our running example. The
resulting test FB is shown in Fig. 3.

=REQ CNF ————————» Ptestl TEST test_REQ
(Bl FbUT_Adder generate stest2_TEST result
1.0 [BJFbUT_Adder_TEST
-&DI1 Do1 | vl
DI2 DI1
DI2
D01

(A

» testl TEST 81 — test1 TEST |test_REQ

testl TEST W
o -

START 1 — test_complete —

»
1

result

rd
test2 TEST — toct2 TEST S1 — test2 TEST test REQ
§ y,

Figure 3. Creating test FB for an FB under test. The behaviour of the test FB
is implemented as a state diagram (Execution Control Chart, bottom Figure).

Authorized licensed use limited to: Lulea University of Technology. Downloaded on March 12,2024 at 14:42:04 UTC from |IEEE Xplore. Restrictions apply.

1) One Input Event per Service Sequence: Every service
sequence must result in a corresponding input event at the test
FB. The name of the input event should reflect the one of the
realised service sequence to show their association.

2) One Output Event per Input Event of FB under Test:
The test FB will trigger all required events that are part of
a test sequence. As a result, the test FB requires one output
event for each input event of the FB under test.

3) One Output Event for Triggering the Comparison: There
should be a single output event in the test FB that represents
that a test sequence was completed (named result).

4) One Data Output per Data Pin of the FB under Test:
This rule specifies that all input and output data pins of the
FB under test should be exposed as output pins in the test FB.
These outputs are used for instrumenting the FB under test
and for the comparison.

5) Values of Variables Are Set According to the Service
Specification: The values of the data outputs from the previous
step should be set based on the service sequence specification,
which defines the input values and expected output values for
each sequence. We assume that values for all data pins are
present in the service sequence model for careful monitoring
of the data flow.

6) State Diagram of Test FB Has One State per Transac-
tion: There should be one state in the state diagram of the
test FB per transaction of the sequence. Each specified input
event in a service sequence starts a new transaction. Each state
has an algorithm which updates the data outputs. Sending an
output event is required to publish these data values.

7) Output Event Occurrence upon Completing Test: In
Rule 3, an output event pin was defined for completing the
sequence. The state diagram has to ensure that this event is
sent after completing a sequence. The generated test FB is part
of a test application. We created a composite FB manually in
Fig. 4 (according to step 5 in Section IV).

B. Tool Support

Tool support for specifying service sequences and simulat-
ing their results is available in Eclipse 4diac [11] from previous
work [7]. We have extended the tool with a test FB generator,
which uses the information provided in service models to
create test code. With respect to the proposed process (Fig. 2),
we focused on automating step 4 in this proof-of-concept
implementation. Furthermore, not all service sequence models

mtestl

mtest2
testFB
testl_TEST test_REQ

test2 _TEST result
| ®iFbUT adder_TEST[

SUCCESSH

fb_under_test FAIL™

BREQ {
-:minUTiAdder‘H
ADI1 po1

DI2

estSuccess

=ET1 EO1 =ET EQ@
“.;E]Compm'e[ji EOL
C1 MATCHY, |@IE_SWITCH
aC2 ‘ l6 |

Figure 4. Composite FB encapsulating the test application. The FB under
test receives event and data signals from the test FB, which realises the test
cases from the service sequence model.

are supported at this stage. For instance, a scenario comprising
different events in a single test cannot be used as a source for
automatically generating a test FB yet.

VI. CONCLUSION AND FUTURE WORK

In conclusion, the proposed testing methodology for IEC
61499 FBs offers systematic and reliable means to verify the
correct behaviour of FBs across diverse RTEs. The generation
of test FBs from a model-based specification, represented as a
service sequence, was accomplished through semi-automated
means. Engineers can manually create the test specification
(e.g., for test-driven development), or derive it from an existing
implementation via the IDE. Our created test FBs are portable
across platforms to allow platform-independent testing. This
paper presented the overall approach and a first proof-of-
concept implementation. We provide an initial set of transfor-
mation rules and the corresponding tool support for automating
part of the process.

In future work, we aim to support all kinds of FB imple-
mentations, provide also the test applications automatically,
and evaluate our approach based on a realistic use case to
evaluate the scalability and feasibility of the approach in
practice. Additionally, developing a runtime comparison tool
to analyse and compare the behaviour and performance of
FBs across different platforms would enable control engineers
to identify and address discrepancies. Finally, integrating the
testing approach with further model-based development tech-
niques, such as formal methods or simulation, would provide
a holistic approach to system verification and enhance the
overall reliability of developed systems.

REFERENCES

[1] IEC International Electrotechnical Commission, “IEC 61499-1/ed. 2:
Function blocks - part 1: Architecture,” 2012.

[2] J. H. Christensen, T. Strasser, A. Valentini, V. Vyatkin, A. Zoitl,
J. Chouinard, H. Mayer, and A. Kopitar, “The IEC 61499 function block
standard: Software tools and runtime platforms,” ISA Automation Week,
2012.

[3] K. Thramboulidis, “Different perspectives [face to face; “iec 61499 func-
tion block model: Facts and fallacies” |,” IEEE Industrial Electronics
Magazine, vol. 3, no. 4, pp. 7-26, 2009.

[4] M. Xavier, T. Liakh, S. Patil, and V. Vyatkin, “Developing a test suite
for evaluating IEC 61499 application portability,” in 2023 IEEE 32nd
Int. Symp. on Industrial Electronics (ISIE), 2023.

[5] G. J. Myers, C. Sandler, and T. Badgett, The art of software testing.
John Wiley & Sons, 2011.

[6] R. Hametner, I. Hegny, and A. Zoitl, “A unit-test framework for event-
driven control components modeled in IEC 61499,” in Proc. 2014 IEEE
Emerging Technology and Factory Automation (ETFA), 2014.

[71 B. Wiesmayr, A. Zoitl, A. Garmendia, and M. Wimmer, “A model-based
execution framework for interpreting control software,” in 26th IEEE Int.
Conf. Emerging Technologies and Factory Automation (ETFA), 2021.

[8] R. Sinha, S. Patil, L. Gomes, and V. Vyatkin, “A survey of static formal
methods for building dependable industrial automation systems,” IEEE
Trans. on Industrial Informatics, vol. 15, no. 7, pp. 3772-3783, 2019.

[9] T. Hussain and G. Frey, “UML-based development process for iec

61499 with automatic test-case generation,” in 2006 IEEE Conference on

Emerging Technologies and Factory Automation, pp. 1277-1284, 2006.

I. Buzhinsky, V. Ulyantsev, J. Veijalainen, and V. Vyatkin, “Evolutionary

approach to coverage testing of IEC 61499 function block applications,”

in 2015 IEEE 13th Int. Conf. on Industrial Informatics (INDIN), 2015.

Eclipse 4diac, “Eclipse 4diac - The Open Source Environment for Dis-

tributed Industrial Automation and Control Systems,” 2020. Accessed:

June 15, 2023.

[10]

(1]

Authorized licensed use limited to: Lulea University of Technology. Downloaded on March 12,2024 at 14:42:04 UTC from |IEEE Xplore. Restrictions apply.

