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Abstract—A rigorous check is a significant phase in the design
process of control programs of safety-critical cyber-physical
systems. Here, we consider such programs to be implemented
using IEC 61499 standard for industrial automation. After the
check is performed (for example, using formal verification), the
engineer needs to ensure that even in unexpected situations,
the system will not fail during the runtime, and for this online
verification methods can be utilized. In this work, we consider
attaching monitors implemented as basic function blocks to the
interface of the controller, thus having a property being moni-
tored represented in the form of a state machine. Now, monitors
make the system safer only if their quality is also ensured. Since
their complexity is far lower than the complexity of the controller,
they can be model checked, however, in the case of IEC 61499
function blocks, open-loop model checking will produce spurious
counterexamples as it will allow combinations that are not
possible according to the IEC 61499 function blocks semantics
(e.g., data transferred without firing the event). The current
work addresses this issue and proposes a method for close-loop
model checking of monitors, using the non-deterministic twin of
a controller under supervision. We present our approach using
the system of two orthogonal pneumatic cylinders.

Index Terms—Formal verification, model checking, monitors,
IEC 61499.

I. INTRODUCTION

Safety-critical cyber-physical systems must always comply
with their requirements before they become operational. One
of the important parts of the process of ensuring compliance
is checking whether the control program (or controller) of
such a system works as expected. This can be done using
verification or validation approaches, which are united by the
fact that none of them has a hundred percent coverage when
dealing with complex industrial-sized systems. In the case of
conventional testing or simulation, even if they are automated,
some operational environment-related events might be left
out and the industrial-sized system might be too complex to
have all the possible test cases generated. Formal verification
techniques allow the engineer to check the whole state space of
the system; however, they suffer from a state-space explosion
problem and of being computationally demanding overall

when verifying complex systems. To combat this issue, various
model abstraction techniques were developed to decrease
model complexity (for example, to verify some particular
functionality) [1], [2]. Another approach is bounded model
checking, in which the executions of particular lengths are
checked [3]. This, in turn, brings us back to the problem of
missing a longer scenario that leads to failure.

Nevertheless, both approaches avail in finding the issues
in the pre-operational stage, and what has to be added is an
entity that would observe whether the particular property of
the system holds during the runtime and communicate to an
error handling system if the malfunction occurs. Such entities
are called monitors or observers [4]. They can be internal or
external to the system and perform the online verification.
Online verification has another advantage, i.e., if the changes
have to be applied to the control program fast and there is
a lack of resources to perform the global re-check, observers
will maintain the safety state of the system by communicating
the critical errors during the runtime.

In this work, our control programs are implemented fol-
lowing the IEC 61499 standard for industrial automation,
and we consider internal monitors represented with basic
function blocks, meaning that the properties of the system to
be monitored are expressed as individual finite-state machines.
This makes our monitors a better target for formal verification,
and model checking, in particular, than the control program as
a whole, since checking their whole state space requires less
computational resources.

Model checking [5] is an approach for formal verification,
where the formal model of the system is checked during the
pre-operational stage, which is called offline verification. In
addition to a formal model of the system, model checking
requires a formal representation of the properties of the system
(for example, using linear temporal logic (LTL)) as input. The
model checker then derives all possible execution scenarios
and produces counterexamples if the requirements do not hold.
The counterexample for a requirement is such an execution
scenario (or a system trace) where the requirement fails.
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Now, we propose to perform an offline verification (model
checking) over the functional unit developed for online ver-
ification. Here, we face the issue that the traditional open-
loop approach for model checking will produce spurious
counterexamples due to the semantics of IEC 61499 function
blocks (FBs), where, for example, data cannot be sent or
received without corresponding events being fired. We address
this by modeling a non-deterministic twin of the controller
and verifying a closed-loop model instead. We demonstrate
our approach on a run-through example of two orthogonal
pneumatic cylinders moving forward and backward. For model
checking, we use NuSMV verifier [6] and translate our FBs to
its programming language (SMV) using the FB2SMV tool [7].

The remainder of this paper is structured as follows. Sec-
tion II gives an overview of IEC 61499 standard and the
verification methods of FBDs implemented according to it.
Section III describes a methodology for designing a supervised
system, which is described in detail on a run-through example
in Section IV. Section V concludes the paper.

II. PRELIMINARIES

A. IEC 61499

IEC 61499 defines a design paradigm for distributed
automation and control systems. The systems are imple-
mented using the graphical language of function block dia-
grams (FBDs). An FBD is a set of various interconnected FBs
that can be of a basic, complex, or service interface type. In
this work, we do not consider the latter. All FBs have their data
and event input and output interfaces. The bricks of an FBD
are basic FBs that represent atomic functional units. The logic
of a basic FB is defined by an execution control chart (ECC),
which essentially is a Moore state machine and consists of
states, transitions, and actions. In each state, an algorithm can
be executed and/or an event (defined in the output interface of
the FB) emitted. Complex FBs are nets of interconnected FBs
of any type. The final FBD is assembled using the available
FBs.

IEC 61499 systems are event-driven, unlike, for example,
IEC 61131-3 [8] systems that follow a cyclic execution pattern
and event is a key concept for the standard. Any event input
or output can be bound to a subset of data inputs or outputs,
respectively, which means that the corresponding data will be
received and processed or sent only if the particular event fires.
Intuitively, any update of the event variable opens the gates
for the data connected to it.

In this paper, we create our observers using basic FBs,
incorporating the logic of the condition to be monitored in their
ECCs. As in [9], we use Non-Deterministic Transitions (NDT)
to create a non-deterministic twin of the controller of two
pneumatic cylinders to verify the observers in a closed loop.

B. IEC 61499 verification

There exists a sufficient amount of literature on the topics of
online (dynamic) and offline (static) verification of IEC 61499
FBDs.

An overview of both static and dynamic verification ap-
proaches is given in [10]. [11] proposes an approach of
converting IEC 61499 FBs to Esterel and its subsequent verifi-
cation. In [12], [13], the monitors expressed as IEC 61499 FBs
are added not for run-time verification but to better understand
the counterexamples produced by the static verification ap-
proach. The system represented as a Kripke structure, together
with observers and (possibly) computation tree logic (CTL)
formula are provided as input to the verification module.
The authors suggest that, if the counterexample is received,
the debugging process is simplified, as observers are inserted
into the system structure. [14] considers static verification
by enriching FBs with formal contracts and addressing ver-
ification on the component, algorithm, and ECC levels. In
the works [15] and [16] the authors translate FBDs to SMV
closed-loop formal models, [9] continues in this direction and
presents a notation within IEC 61499 syntax for the subsequent
generation of closed-loop formal models of FBDs and their
verification by means of NuSMV.

Examples of dynamic verification include, for example, [17]
that proposes adding enforcers to the application, which will
not only monitor but adjust the supervised values in case
of the property failure to ensure that the correct values are
emitted by the controller. In [18], [19], the authors add assume
and guarantee contracts in the form of FBs to the application
to monitor the system during the run-time. [20] introduces
behavioral runtime monitors into the 4DIAC framework. These
monitors are generated automatically using service sequences
extended with behavioral types. Combining various control
and verification techniques, a reconfiguration architecture for
fault handling in industrial systems is designed in [21].

Approaches for dynamic and static verification, both, have
their advantages and serve their purposes, hence, probably, the
best way to ensure the system’s correctness is to complement
one with the other. However, despite the fact that there are
numerous approaches for online verification, very few articles
mention that the diagnosis units themselves must undergo
a sanity check, which is especially important in relation to
IEC 61499 FBs, where an occasional missing event in a
transition condition can make a monitor erroneous. The point
is outlined in [22] and in [4] an approach to verify the monitors
using Timed Net Condition-Event Systems was mentioned. We
continue the work [4] and elaborate on the static verification
of monitors expressed as IEC 61499 FBs and the challenges
it brings.

III. DESIGN METHODOLOGY FOR A MONITORED CONTROL
PROGRAM

For an automation system to function according to its spec-
ification, it must be checked using offline verification methods
and equipped with online verification mechanisms to ensure
that the requirements hold in unexpected circumstances. For
this, the runtime verification means should also be checked.
Thus, in this paper, we propose a design methodology for the
control programs implemented in form of IEC 61499 FBDs
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Fig. 1. The system of two pneumatic orthogonal cylinders. HorCyl and VerCyl simulate the plant (horizontal and vertical cylinder correspondingly), while
HorCylCTL and VerCylCTL compose a control program. On the right, the HMI of the system is shown with the situation that should be avoided – a
simultaneous extension of two cylinders.

with internal observers (or monitors) that solves the afore-
mentioned problem. Given a plant model (plant simulation
program), for a single monitor, the methodology involves the
following steps:

1) Implementation of the control program.
2) Verification of the control program in a closed loop with

the plant model provided. Depending on its size, the
plant model can be simplified and the heuristics for
reducing the resulting closed-loop formal model state
space may be applied. If the issues are found, the
engineer has to address them and repeat this step until
the verification result is positive.

3) Formulation of a desired property to be observed in the
form of a finite state machine and its implementation as
a basic FB, i.e., implementation of the monitor.

4) Implementation of the simplified non-deterministic twin
of the controller that can produce any combination of
outputs based on any combination of inputs. Verification
of the created monitor in a closed loop with the twin.
The properties to be formulated for the verification
procedure, intuitively, are the following: the monitor
indicates a failure when the failure occurs and the
monitor does not report a failure when the controller
functions as expected. If problems are found, they
should be eliminated, and the system re-checked. This
step should be repeated until the verification yields no
counterexamples.

5) Verification of the monitor in a closed loop together with
the real control program.

6) Verification of the monitor in a closed loop together with
the control program where the fault was injected. Steps 5
and 6 may employ bounded model checking techniques
or heuristics for state space reduction. The steps must
be repeated if there were found issues to be addressed.

The main contribution is concentrated in step 4. In the next
sections, we demonstrate our methodology step by step on a

run-through example of a system of two pneumatic cylinders,
especially focusing on step 4.

IV. METHODOLOGY APPLICATION

A. Steps 1 and 2: control program implementation and veri-
fication

Our task was to create a control program for two orthogonal
pneumatic cylinders that move towards each other and back
by pressing a switch button. The plant simulation model
was implemented as an IEC 61499 FBD in EcoStruxure
Automation Expert (EAE).

The aim of the controller was to allow both cylinders to
extend and retract once the button was pressed. The following
safety requirement was to prevent the cylinders from colliding.
Thus, we implemented the priority system so that the horizon-
tal cylinder can start moving only when the vertical cylinder
is retracted. The complete system is presented in Figure 1.
Here, the control program consists of two controllers (for
vertical and horizontal cylinders) of the same FB type that are
connected in a closed loop with their plant models (cylinders).
When the button is pressed, the command START is sent to
the controllers and the cylinder with the higher priority gets
the command to start its moving cycle (extend and retract).
After the controller recognizes that its cylinder is retracted, it
sends the priority giving event (give_PRIO) to the vertical
cylinder and sets the variable LET to true, allowing the vertical
cylinder to take its turn.

In our case, the system is of a moderate size and we
can apply model checking as is, without abstracting the
system or using bounded model checking. Thus, we trans-
lated our system to SMV code using the FB2SMV tool and
checked the following LTL formula with NuSMV verifier: G
¬(Ver.EXTEND ∧ Hor.EXTEND) (where Ver and Hor
are VerCylCTL and HorCylCTL correspondingly), which
means that at every discrete time step, the two cylinders never
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get the command to extend simultaneously. The verification
result was successful.

B. Step 3: Monitor implementation as a basic FB

The next step was to create a monitor that would observe
whether the safety property (i.e., two cylinders should never
receive the command to extend simultaneously) is maintained
by the system during the runtime. We implemented the monitor
as a basic FB and assumed that it would be connected to the
controllers as in Figure 2 (other connections are not depicted
for the sake of clarity).

Fig. 2. Monitor NoCollisionMonitor connected to the controllers (other
connections are not shown for clarity).

The monitor receives the EXTEND outputs from both
controllers together with their events CNF and communi-
cates whether the collision is occurring by setting its output
collision to true and triggering the CNF event. The ECC
of the monitor is presented in Figure 3.

Fig. 3. Interface of the monitor and its ECC. Algorithms OK and COLLISION
set output variable collision to false and true correspondingly.

C. Step 4: monitor verification with a non-deterministic twin
of the controller

The next step is to verify the implemented monitor in a
closed loop with the controller (which we decompose into

Fig. 4. ECCs of the cylinder controller (to the left) on of its ND twin (to the
right).

two controllers – for vertical and horizontal cylinders). In our
case, the controllers are represented with basic FBs, and the
closed-loop model checking will produce the result within an
acceptable time interval. However, we will have to close the
loop on the inputs of the controllers as well, meaning that
we will either have to model simplified plants or provide
other means for the controllers to produce all the possible
combinations of their output values. Moreover, even if we
succeed in closing the loop on the controllers, in case issues
are found during the model checking, counterexamples will be
hard to decipher as they will elongate and dozens of additional
variables will be added to the system state.

Thus, we propose creating a non-deterministic twin of the
controller, which will be represented with two FBs of the same
type just like our individual cylinder controllers. Now, let us
disclose the notion of a non-deterministic twin (ND twin).

To model check the monitor, it is important that the model
checker would infer all the possible combinations of its
inputs, meanwhile triggering the events associated with them.
Therefore, the goal of an ND twin is to abstract the logic of
the controller by saving its key states, where the variables
that are monitored change and add the non-deterministic
transitions (NDT) between them. Such events in an FBD
turn into non-deterministic inputs in the SMV module of the
corresponding FB, generated by FB2SMV as described in [15].

The ECC of our individual controller of the cylinder to-
gether with its ND twin are presented in Figure 4. Two
states that change the supervised variable EXTEND are EXT,
RETRACT, and STOP. We kept them in the ND twin and added
NDTs between them so that at any time any output could be
produced. From the algorithms, we remove everything that
does not influence the variable EXTEND and leave only the
CNF event associated with it. Figure 5 shows two ND twins
of the controllers connected to our monitor.

When the system is converted to SMV, the first step is to
verify that we can indeed get all the values of the monitor
input, that is, our ND twins function according to their speci-
fications. The set of properties that make up the specification
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can be created according to the following template.
Assume that we have a set of all the supervised variables

in a single ND twin U . ∀u ∈ U,∃Du, where Du is a domain
of u. Then, ∀u ∈ U,∃Vu = {(u, v) | v ∈ Du}, where Vu

a set of all possible assignments of u. Now, a set of all the
possible combinations of the variables values is C = Vu1 ×
. . .×Vun

, n = |U |. Having C, we can now formulate the CTL
specifications to be checked as a set S:

S = {AG ¬(
∧
p∈P

u(p) = v(p)) | P ∈ C},

where P a set of variable and value pairs, u(p) returns the
variable name of pair p and v(p) its value. Thus, if any of
the specifications from S are satisfied, it means that their
corresponding combination cannot be generated by a formal
model of an ND twin. Similarly, we check if the observer can
get all the possible combinations of input values.

In our case, we checked the following specifications
for the ND twins (here, twin is replaced with the cor-
responding names of the FBs for horizontal and verti-
cal cylinders controllers twins): AG twin.EXTEND and
AG ¬twin.EXTEND, – and four specifications for the
monitor of type AG ¬(NoCollisionMonitor.hext ∧
NoCollisionMonitor.vext) (we omit others to save
space). All the specifications failed, which means that all the
combinations were possible in our model.

Now, that we know that our model produces all the
combinations of inputs, we can formulate the proper-
ties of the monitor to be checked. The first one tells
that whenever the monitor gets the signals that both of
the cylinders extend simultaneously, it produces the warn-
ing. Its LTL equivalent is: G ((m.hext ∧ m.vext) →
(m.hext ∧ m.vext U m.collision)), where m. is
short for NoCollisionMonitor.. Here we use operator
U – ”until” instead of X (”next”) or no temporal operator due
to the specifics of the generated SMV model, where several
model evaluations should occur to obtain the result of the FB
output.

The second property tells that if the cylinders are not
extending simultaneously, the collision is not reported,

Fig. 5. Connection of the monitor to ND twins of the cylinder controllers.

Fig. 6. The ECC of the erroneous cylinder controller.

which is in LTL: G (¬(m.hext ∧ m.vext) → F ¬
m.collision).

Both properties were satisfied by our monitor.

D. Steps 5 and 6: monitor verification with the real and
erroneous controller

Now, we add the monitor to the system and check whether
we connected it properly by verifying the system with the
monitor as a whole. If the system at step 2 was checked using
state-space reduction techniques, they can be applied here as
well.

To check whether the monitor works when there is an error
in the system, we inject the fault manually. In our case, we
remove the priority mechanism from the controllers so that, by
pressing the button, both cylinders extend simultaneously. The
ECC of the erroneous cylinder controller is shown in Figure 6.

With both systems, we partially verify the same properties
as in Section IV-C. In both cases, we check whether all
combinations of input values are possible for the monitor.
The correct system reports that there is no possibility for
two cylinders to get the extension command simultaneously,
while only this is possible in the malfunctioned system.
Then, we check the monitor properties, i.e., whether it reports
the collision when it happens and does not report spurious
collisions. Since the collision is not allowed in the first system,
we omit the first monitor property, when checking the correct
system, similarly, we omit the second property, checking the
erroneous one. In both systems the checked properties hold,
thus we can conclude that the monitor and its connections are
correct.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a design methodology for the
supervised system implemented in form of IEC 61499 FBD,
putting special attention to the verification of the supervision
mechanisms, that is, the monitors. This methodology allows
using formal verification with state-space reduction or ab-
straction techniques while verifying the system as a whole,
while creating reliable means for online observation of its
function. Our main contribution is the approach for extensive
closed-loop verification of monitors implemented in form of
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IEC 61499 FBs using the simplified non-deterministic twins
of the controllers.

Having the system monitored gives an additional advantage
while introducing small changes to the system when, for
instance, the time does not permit performing the whole
recheck. If the connections to the monitor do not change, with
the proper setting of an error handling unit, the system will
stay safe even if the new change leads to a failure.

The manual implementation of the proposed methodology
may seem to cost time and effort; however, the process can
be automated. Our future work in this direction focuses on
creating the plugin to an open-source IDE for IEC 61499
programs, FBME [23], that would implement the algorithm
that distinguishes the key states of the controller, which change
the variables under supervision, and generate a FB with NDTs
between such states (i.e, ND twin). The properties that should
be checked on an SMV model of an ND twin can also be
generated automatically following the definition that we used
in the current work. Thus, if we assume such a plugin, the
input data for it would be a monitor, a supervised controller,
and a set of temporal properties with which the monitor should
comply. The subsequent check of the monitor injected into the
system as a whole can be done semi-automatically, depending
on the size of the SMV model of the system.

Another direction of future work is to explore the scalability
of our monitor-checking approach and verify more complex
properties that include not only inputs of the monitors but any
variable in the system, as well as monitors and controllers
implemented as composite FBs.
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