
Received 18 August 2023; accepted 25 September 2023. Date of publication 2 October 2023;
date of current version 16 October 2023. The review of this paper was arranged by Associate Editor Paulo Leito.

Digital Object Identifier 10.1109/OJIES.2023.3321084

Formal Verification of the Control Software of
a Radioactive Material Remote Handling

System, Based on IEC 61499
GIORDANO LILLI 1,2, MIDHUN XAVIER 3 (Student Member, IEEE), ETIENNE LE PRIOL 4,
VINCENT PERRET 4, TATIANA LIAKH 3 (Member, IEEE), ROBERTO OBOE 1 (Fellow, IEEE),

AND VALERIY VYATKIN 3,5 (Fellow, IEEE)
1Department of Management and Engineering, University of Padova, 36100 Vicenza, Italy

2Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, 35020 Legnaro, Italy
3Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, 971 87 Luleå, Sweden

4Department of Mechanical Engineering, École Normale Supérieure Paris-Saclay, 91190 Gif-sur-Yvette, France
5Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland

CORRESPONDING AUTHOR: GIORDANO LILLI (e-mail: giordano.lilli@phd.unipd.it)

This work was supported in part by European Commission through the HORIZON 2020 project 1-SWARM under Grant 871743 and in part by the Horizon Europe
project Zero-SWARM under Grant 101057083.

ABSTRACT Automation systems within nuclear laboratories are intended to work under harsh operating
conditions. Selective Production of Exotic Species (SPES) is a nuclear research facility currently under
construction by the Istituto Nazionale di Fisica Nucleare, dedicated to the production and study of radioactive
ion beams. Isotopes are produced within the target ion source unit, a vacuum vessel that must be replaced
on a regular basis. The highly radioactive environment necessitates the deployment of a set of automated
systems dedicated to the unit’s remote management. To meet high-level security standards, the design of
such instrumentation and control systems must include extensive verification. Based on specific safety
requirements, model checking can be used to assess the systems’ correctness. This article describes how
to employ an integrated toolchain to design, simulate, formally verify, and deploy the control software for
the Horizontal Handling Machine, a safety-critical remote handling system in operation at SPES. The IEC
61499 standard’s adoption led to a redesign of the control logic. Following a preliminary online simulation,
the closed-loop system has been formally verified using the NuSMV symbolic model checker, with the
help of the FB2SMV converter. In addition, the Function Blocks Modeling Environment tool was used for
automating verification and analyzing counterexamples.

INDEX TERMS Formal verification, IEC 61499, isotope separation online (ISOL), model checking,
NuSMV, radioactive ion beams (RIBs), remote handling, Selective Production of Exotic Species (SPES),
simulation.

I. INTRODUCTION
Automation systems in nuclear laboratories must comply
with strict safety requirements to avoid any potential risk
to personnel or equipment. The critical operating environ-
ment generally discourages innovation in the design of control
software, leading to an old-fashioned approach still today in
the Industry 4.0 era. However, the introduction of distributed
control systems based on modern standards would be advan-
tageous for operational and safety challenges. This paradigm

shift will lead to the development of smarter systems
based on flexible and reconfigurable automation architectures.
In this context, the evolution from applications based on
IEC 61131-3 [1] toward IEC 61499 [2], [3] solutions would
provide key tools to face the design and verification challenges
typical of complex distributed control systems. The main ad-
vantages of this migration include:

1) flexible, reconfigurable, and scalable architecture;
2) modular design and standardized function blocks (FBs);

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 4, 2023 417

https://orcid.org/0000-0002-2835-3698
https://orcid.org/0000-0003-3371-6075
https://orcid.org/0009-0001-5066-8215
https://orcid.org/0009-0006-4114-4117
https://orcid.org/0000-0001-9148-946X
https://orcid.org/0000-0003-3078-2915
https://orcid.org/0000-0002-9315-9920
mailto:giordano.lilli@phd.unipd.it

LILLI ET AL.: FORMAL VERIFICATION OF THE CONTROL SOFTWARE OF A RADIOACTIVE MATERIAL REMOTE HANDLING SYSTEM

3) simulations and offline and online verification;
4) formal model checking techniques.
The Selective Production of Exotic Species (SPES) facil-

ity [4] can be considered an attractive use case to demonstrate
the advantages of implementing safety-critical control sys-
tems based on IEC 61499. The Istituto Nazionale di Fisica
Nucleare (INFN) is currently developing an experimental
plant at Legnaro National Laboratories for multidisciplinary
research on radioactive ion beams (RIBs) produced through
the isotope separation online technique [5]. Isotopes are gen-
erated, as fission reaction products, from the collision of a
high-energy proton beam (40 MeV, 200 µA) with a mul-
tifoil uranium carbide target [6] consisting of seven UCx
disks [7]. The target ion source (TIS) unit [8] is identified
as the core of the process. Here, the isotopes are produced
and extracted for further studies in the field of nuclear physics
and for medical applications. Unfortunately, aging of target
and source materials requires regular replacement of the TIS
unit to maintain high efficiency. This is difficult in view of the
specific operational conditions. Indeed, the highly radioactive
environment precludes any human operation. For this reason,
the management of the TIS unit is entrusted to a remote
handling framework [9], conceived to fulfill its specific life
cycle. The safe operation and reliability of mobile robots op-
erating in complex scientific facilities are essential features
that need to be assessed [10]. In the SPES case, the auto-
mated systems involved in the replacement procedure face
an intense radiation field generated by various contributions,
such as the TIS unit [8], the residual front-end activation [11],
and the isotopes deposition along the RIB line [12]. Oper-
ational safety is the outcome of an integrated strategy that
combines the formal verification of control software with
the deployment of inherently safe design principles to the
hardware. In our work, we focused on the most critical re-
mote handling task: the automated removal of a radioactive
TIS unit from the SPES Front-End. The main objectives of
the study are to demonstrate the benefits of the migration
of IEC-61131-based software to an IEC 61499 architecture
and to implement offline and online software verification
techniques. This contribution describes the development of
flexible and reconfigurable control software based on IEC
61499, along with its formal verification through an inte-
grated toolchain, for a safety-critical remote handling system:
the Horizontal Handling Machine (HHM) depicted in Fig. 1.
The provided implementation demonstrates how to incorpo-
rate modular nondeterministic transitions (NDTs) in formal
verification to improve the model’s realism while limiting
complexity.

The rest of this article is organized as follows. Sec-
tion II discusses the related works and the problem statement.
Section III explains the design and formal verification ap-
proach adopted for a radioactive material remote handling
system. Sections IV and V describe the approach used to per-
form online simulations and formal verification, respectively.
Section VI presents the main results of the work. Finally,
Section VII concludes this article.

FIGURE 1. HHM is the primary remote handling vehicle in operation at the
SPES facility.

II. RELATED WORKS AND PROBLEM STATEMENT
Designing control systems for industrial applications, partic-
ularly those involving nuclear-based materials, is of utmost
importance. It is essential to adopt an approach that offers
a flexible, portable, reconfigurable, and scalable architecture.
In this context, the use of design patterns within the field of
industrial cyber-physical systems (iCPS) employing the IEC
61499 standard emerges as a favorable strategy for designing
such systems [13], [14]. These design patterns, originating
from experienced system designers, hold significant value in
the field of software engineering [15].

A. IEC 61499: A MODEL-DRIVEN APPROACH TO BUILD
COMPLEX CONTROL SYSTEMS
IEC 61499 [2] is a standardized framework employed in the
field of industrial automation for the modeling of distributed
control systems [16]. The language’s flexibility greatly con-
tributed to its popularity for this type of projects. The use of
advanced design patterns is crucial during the development of
applications, which are defined as platform-independent mod-
els composed of modular components, in order to properly
exploit this potential, achieving a high level of reusabil-
ity, and ensuring greater reconfigurability of the underlying
systems [17]. Christensen et al. [18] introduced a model-
driven approach for distributed control systems, employing
the model-view-control design pattern [19] within the context
of IEC 61499 systems. The existing body of literature has

418 VOLUME 4, 2023

extensively investigated a variety of model-driven software
design and engineering approaches that can be employed for
the development of control systems, with a particular empha-
sis on their application to iCPS [14]. Bonfé et al. [20] examine
the packaging industry practices and present design patterns
specifically tailored for model-driven software design and im-
plementation. Moreover, similar design patterns are proposed
in [21], [22], and [23].

Safety of control software is an additional factor that
becomes crucial in specific applications, such as laborato-
ries dealing with nuclear-based materials. In these contexts,
comprehensive testing is imperative to mitigate the risk of
potentially catastrophic issues arising from even minor errors.
The verification challenge of IEC 61499 has been acknowl-
edged since the early stages of the standard’s development and
evaluation [24], [25]. To achieve the most thorough verifica-
tion, closed-loop modeling has been suggested, necessitating
the inclusion of plant modeling [26]. The implementation of a
model-driven approach facilitates simulation in the loop [27],
[28], enabling thorough testing and identification of system
errors.

During the design process, simulation plays a crucial
role in assessing the overall behavior of the control sys-
tem, ensuring its compliance with expected outcomes and
assisting in the process of virtual commissioning [29]. How-
ever, despite being advantageous in identifying flaws, this
tool does not provide a guarantee of system reliability. For-
mal verification techniques have, thus, been proposed, as a
promising approach to automatically verify the correctness
and safety of automation systems. Specifically, the model
checking integration in closed-loop verification [30] assists in
the identification of design weaknesses in the model through
the use of counterexamples. The closed-loop architecture,
encompassing both the controller and the plant, depicts the
overall behavior of the system. This design approach works
successfully for both simulation and formal modeling appli-
cations [31].

B. FORMAL VERIFICATION TECHNIQUES FOR MODULAR
INDUSTRIAL CONTROL SYSTEMS: CHALLENGES AND
STRATEGIES
Model checking includes formal verification methods that
are used as trustworthy tools to grant the correctness of in-
strumentation and control systems [32], [33], [34]. These
techniques have been employed in a wide range of disci-
plines, including avionics [35], [36], automotive [37], [38],
[39], and nuclear power plants [40], [41], [42], [43]. Despite
their remarkable benefits for the validation of complex au-
tomation control logics, the computing requirements of model
checking techniques may frequently represent a bottleneck
in their use [44]. Several approaches have, thus, been pro-
posed to reduce their computational complexity [45], [46],
[47]. Furthermore, special care should be taken to guarantee
that the system model’s architecture reflects the behaviors
of actual systems [48]. The entire verification procedure is
completed in three phases. Creating a formal version of the

actual system is the first step. At the second stage, the model
and temporal logic specifications are fed into a verification
tool. NuSMV [49] is a symbolic model checker based on
binary decision diagrams (BBDs), whereas SPIN [50] is an
explicit state software verification suite. In the third step,
the tool reports whether or not the specification was met.
A sequence of the model’s states where the specification
does not hold will also be provided, if possible, as a coun-
terexample [51]. Unfortunately, despite the values of the
model variables being included in each element of the se-
quence, counterexamples are unable to reveal their inherent
dependencies or internal structure [52]. In an effort to make
model checking more user-friendly, a number of visualization
tools [53] have been created in recent years to assist users in
understanding system behavior during specification violations
and to identify the source of the problem [54], [55], [56]. This
method’s ultimate goal is to identify design flaws in the con-
troller. In [57], a novel framework is presented for the design
and validation of industrial automation systems using formal
methods, specifically leveraging the IEC 61499 architecture
and the automation object concept. The proposed approach
enables the comprehensive process of designing, simulating,
formally verifying, and deploying pick-and-place systems.
Several technologies are available for formally modeling and
validating industrial control systems [58]. The VEDA tool, for
instance, is designed to support the formal verification of IEC
61499 systems within a closed-loop context. Although VEDA
supports the modeling of the controller using a Petri net repre-
sentation, representing the plant component requires manual
effort. Recent research demonstrates the automatic genera-
tion of plant models from event logs [59], [60], simplifying
the arduous task of constructing formal models for control
engineers. Furthermore, interactive learning techniques have
played a crucial role in enabling the automatic generation of
controller FBs [61], thereby greatly facilitating the process
of formal verification. The introduction of FB2SMV [62] en-
abled the creation of SMV models as formal representation
derived from the IEC 61499 FBs within the system. This
process allows us to take advantage of the great potential pro-
vided by NuSMV industry-grade model checker [49]. Given
the introduced benefits, a significant effort has been made into
including formal verification tools within the design process.
The development of a seamless process that links engineering
with verification was outlined in [63]. The toolchain includes
an IEC-61499-compliant engineering environment, a con-
verter for translating FBs into SMV code, the NuSMV model
checker, and utilities for interpreting counterexamples. The
presented approach aims to facilitate the design, simulation,
formal verification, and distributed deployment of automa-
tion software for a cyber-physical system (CPS). To achieve
this, a problem-oriented notation within the IEC 61499 syn-
tax is suggested, enabling the creation of comprehensive
closed-loop models. The proposed methodology addresses the
challenge of verifying and analyzing FBs implemented in the
IEC 61499 standard by providing a toolchain that supports
continuous development and testing of distributed control

VOLUME 4, 2023 419

LILLI ET AL.: FORMAL VERIFICATION OF THE CONTROL SOFTWARE OF A RADIOACTIVE MATERIAL REMOTE HANDLING SYSTEM

FIGURE 2. Proposed workflow for the validation of safety-critical automation systems.

systems. Liakh et al. [64] detail the creation of a model
checking plug-in designed for IEC 61499 systems within the
Function Blocks Modeling Environment (FBME) [65] graphi-
cal development environment. This plug-in automates various
stages of the process, including the conversion of the system
into a formal model, model checking, and the provision of
visual explanations for counterexamples.

Despite the undeniable benefits introduced by the IEC-
61499 standard, which provides a reference architecture and
models for distributed control system development, the lack
of established methodologies and theoretical foundation for
iCPS poses a challenge for the development of new CPS
applications. In particular, the integration of the aforemen-
tioned technologies into real industrial applications might be
challenging due to the actual complexity of the solution and
the time required for both the CPS implementation and veri-
fication. Indeed, while some examples for basic systems are
provided in [63], it is still not clear whether the described
techniques can be applied to complex CPS. The goal of this
work thus, is to provide real-world strategies for developing
modular applications, implementing automatic verification
procedures, and reducing system complexity. In this article,
we demonstrate how the described techniques can be ap-
plied in the refactoring and verification of a safety-critical
control system. The following sections give a detailed ex-
planation of each component of the implemented workflow,
which is illustrated in Fig. 2. The development of a modu-
lar and portable system model, the reduction of verification
complexity through the partial incorporation of NDTs, and the
implementation of an automatic verification procedure are the
fundamental novelties of the proposed solution.

III. CASE STUDY
An illustrative example is used to describe the entire formal
verification process of a CPS, which includes the IEC 61499
software remodeling, the partial introduction of NDTs to con-
duct symbolic model checking under realistic conditions, and
the visualization of counterexamples. The case study covered
in this article is a safety-critical remote handling system used
to transport and store radioactive material within a nuclear
research facility. In this work, we propose the refactoring
of an IEC 61131 control software with a new flexible and

reconfigurable architecture based on the IEC 61499 standard.
In addition, formal modeling and verification tools have been
implemented to validate the effectiveness of the designed
solution.

A. HORIZONTAL HANDLING MACHINE
The primary remote handling vehicle used to manipulate and
transfer the TIS unit within the SPES target area is known as
the HHM. This system, depicted in Fig. 1, enables the safe
removal of an irradiated TIS unit from the SPES Front-End
and transport to the temporary storage system, an automated
storage rack designed to house up to 54 TIS units for long-
term radioactive decay. Following the TIS unit removal, the
HHM is employed to install a new TIS unit on the SPES Front-
End in preparation for a new irradiation cycle. The machine
consists of a Cartesian manipulator located on the top of an au-
tomated guided vehicle. While the vehicle allows movement
between different areas, the manipulator is used for the collec-
tion of the TIS unit, its storage, and the upcoming installation.
Here, brushless motors are used for the precise positioning of
three linear axes. Two of them (trolley and crane) allow the
TIS units to move along the longitudinal and vertical direc-
tions, respectively. The third (elevator) allows for the vertical
movement of a shielded box, which is used to secure the TIS
unit during transport. The manipulator’s end-effector consists
of a redundant pneumatic gripper able to engage both the TIS
unit and the shielding box lid. The machine control software
is based on IEC 61131 and runs on an onboard programmable
logic controller (PLC) (Schneider Electric M340). Since its
conception as a safety-critical automation system, the design
of the HHM has incorporated inherently safe principles. In
addition, the system has been assessed using specific proba-
bilistic risk assessment techniques to evaluate the most severe
failure scenarios and validate the implemented independent
protection layers. In this context, software formal verifica-
tion acts as a fundamental protection layer that can reduce
the risk of system failure, potentially leading to unintended
maintenance interventions in areas with a significant environ-
mental dose rate. The HHM software logic supports multiple
operating modes and motion sequences based on the type of
remote handling task. Among the existing operational proce-
dures, we focused on the most critical task: the removal of an

420 VOLUME 4, 2023

irradiated TIS unit and subsequent storage inside the shield-
ing box during transport. During this procedure, the HHM
is facing the SPES Front-End, and all actions are carried out
by the Cartesian manipulator. The onboard PLC controls the
sequence management, which includes the axes movements,
the pneumatic gripper, and the reading of the various hard-
wired signals from the limit switches demanded to detect the
proper positioning of the radioactive TIS unit. This scenario
has been considered as critical since a potential fault during
the execution would necessitate a maintenance intervention
under severe radiological conditions, leading to a significant
personnel exposure.

The operation consists of the following steps.
1) The trolley initially moves ahead to pick up the TIS unit.
2) The crane descends, engages the TIS unit, and rises to

the top positions.
3) The trolley moves to the middle position on top of the

open shield box while holding the TIS unit.
4) The crane lowers the TIS unit, while the elevator raises

the box. Once in position, the gripper releases the pay-
load.

5) The manipulator finally closes the box with the lid.
The finite-state machine (FSM) is depicted in Fig. 3.

B. IEC 61499 IMPLEMENTATION
The HHM control software was initially designed in accor-
dance with the IEC 61131-3 standard; an overview of the
software section implementing the main state machine as a
case structure is reported in Fig. 4. With the advancement of
technology, the IEC 61499 introduction suggested a complete
code refactoring in the direction of a more modern, modular,
and flexible architecture, where it would be possible to change
the behavior of the system by acting on a single FB. The re-
modeled application of the HHM control logic was developed
using the EcoStruxure Automation Expert tool. The software
architecture is built on FBs linked to Moore-type FSMs known
as execution control charts (ECCs) [66]. An overview of the
global composite FB model is available in Fig. 5. One of
the many benefits provided by the IEC 61499 refactoring,
aside from supporting formal verification, is the introduction
of a modular, standardized, and reusable architecture for the
development of FBs. This strategy results in improved code
organization and the potential to “certify” the behavior of
the FBs, thus reducing the verification complexity in subse-
quent applications. In addition, the existing IEC 61131 design,
which is based on structured text (ST), incorporates global
variables within the program to track the program execution.
Since the software’s behavior is not always evident, this poses
a serious concern. In contrast, IEC 61499 provides for the
explicit specification of the dependencies and interactions be-
tween different FBs. The elevator, trolley, crane, and gripper
are the key actuation groups employed in this application.
Each of these mechatronic systems, which work together to
securely encase the TIS unit in the shielding box, is supervised
by a dedicated controller. The following sections provide a
detailed description of the main FBs.

FIGURE 3. TIS unit pick-up sequence’s finite state machine.

1) LINEAR MOTION AXES
A standardized pair of controller and plant FBs can be used to
conceptually model the three linear axes. Using a modular and
reusable strategy, the development work can be significantly
decreased. In addition, it makes it possible for the system to be
easily reconfigured in order to achieve alternative capabilities
in the future. The core FB AXE_CMD, which implements an
absolute positioning control system, is shared by the three
linear axes. The FB and the correspondent ECC are displayed
in Fig. 6. The plant FB precisely sets the axis according to the

VOLUME 4, 2023 421

LILLI ET AL.: FORMAL VERIFICATION OF THE CONTROL SOFTWARE OF A RADIOACTIVE MATERIAL REMOTE HANDLING SYSTEM

FIGURE 4. Original HHM control program, based on IEC 61131-3
structured text.

destination coordinates and provides the POS_REACHED sig-
nal to the controller once the motion is completed. The given
target position directs the AXE_CMD to the preset coordinates.
The FB acknowledges its arrival and stops it once it reaches
the designated spot. A visual representation of the elevator
linear motion axis is reported as an example in Fig. 7.

2) GRIPPER
The operating mode of the HHM pneumatic gripper differs
from the abovementioned systems due to its inherent discrete
logic. Gripper CLOSE or OPEN commands are processed
when the REQ event is triggered. The FB provides two output
signals to indicate when the relevant “closed” or “open” state
has been reached.

3) SEQUENCE CONTROLLER
The SEQUENCE FB manages the integration of the various
subsystems and the overall HHM behavior throughout the
execution of the remote handling sequence. The precise list
of tasks is defined within the correspondent ECC. Each FSM
state is associated with a set of actions carried out by a specific
algorithm. Motion actions are started by setting the desired
position for a specific axis and sending the GO command to the
appropriate controller. The reception of the POS_REACHED
command from the plant FB causes the transition to the next
state. In our case study, the sequence controller FB imple-
ments a state machine that refers to a single HHM task:
the TIS unit pickup sequence. This sequence has been ex-
amined as a representative example. The system’s adaptable
architecture will make it possible to incorporate more motion
sequences in the future by updating a single FB.

4) SUPPORT FUNCTION BLOCKS
The INIT FB initializes the system and prepares it to
perform the desired procedure at the start of software ex-
ecution. The user can then choose between manual and
automatic HHM operating modes by using the TRIGGER and
MODE_SELECTION FBs. While the first allows the user to di-
rect the HHM behavior, the automatic mode forces the system
to stick to the Sequence controller’s state machine logic. The
ESTOP FB, as the last support FB, offers the ability to stop the
execution at any time. This feature protects the system from
internal or external failure caused by unfavorable conditions.

IV. SIMULATION MODEL
IEC 61499 applications can typically be tested using dynamic
(online) or static (offline) techniques. In order to ensure safety
in a system that has already been deployed and is in use,
the first group of techniques seeks to monitor it in its op-
erating state. Conversely, offline safety measures are meant
to reduce fault risk at the design stage and test the system
before use [67]. In our work, we focused on offline verification
methods aimed at fault removal. This process can be accom-
plished at the designed stage using formal verification tools
or online testing techniques. Software simulation involves
feeding the program with input sequences that replicate the
behavior of the actual system and determining whether or not
the program’s outputs comply with specific requirements. The
adopted development suite includes a native human–machine
interface (HMI), which may be used as a command center and
to simulate system execution. Composite automation types
(CATs) were used to model a range of mechatronic compo-
nents for the simulated plant. This feature facilitates testing of
the system’s simulation behavior in a common environment
because CATs can be directly linked to both HMI objects and
FBs. Inputs were used to link the controller FBs to the relevant
CAT blocks, replicating the real-world behavior of the mecha-
tronic components in the system. The HHM representation
implemented in the HMI is shown in Fig. 8, where the three
linear motion axes are linked to distinct CAT blocks. Each axis
plant FB is connected to a dedicated AXE_CMD controller,
which selects the desired position set point from a prede-
fined pool of coordinates and triggers the motion request. In
response to the controller’s inputs, the plant block validates
the coordinates, performs the movement, and acknowledges
its arrival at the predetermined location. The axis motion may
be stopped at any time by activating a STOP input event. The
GR_CMD FB opens or closes the clamp based on the input
signal from the controller. In order to interlock the option of
releasing the payload only in particular positions, the GR_CMD
is additionally provided with the axes’ actual positions.

We should emphasize that the HMI CATs provide a more
accurate representation of the system behavior when com-
pared to the axis plant FBs discussed in Section III. While
in the basic implementation, the plant FB will only trigger
the POS_REACHED signal after an arbitrary time, here, an
integrator simulates the linear axis movement and sends the

422 VOLUME 4, 2023

FIGURE 5. IEC 61499 global composite FB of the HHM model.

FIGURE 6. Overview of the controllers dedicated to the HHM linear
motion axes and gripper. (a) AXE_CMD FB. (b) AXE_CMD ECC.

FIGURE 7. Visual representation of the elevator linear motion axis.
(a) Bottom position. (b) Top position.

actual position coordinates to the correspondent object in the
HMI allowing the user to follow the motion while it is being
executed. Further debugging tools, such as runtime monitor-
ing blocks, can also be employed to detect specific critical
conditions. The software’s modularity allows for the indepen-
dent and concurrent development of the controller and plant
FBs. Each FB will be initially tested and debugged with the
aid of custom mock-up blocks. As they reach maturity, they

FIGURE 8. Graphical representation of the HHM CAT used in the HMI for
online monitoring and simulations.

can then be interconnected to run the simulation. After the
verification, the final stage will be to replace the simulation’s
plant FB with the actual system.

Unfortunately, simulations often cannot explore all possible
paths due to the huge size of state automata representing
industrial control software. This bottleneck makes them insuf-
ficient as an exhaustive verification method since it prevents
conclusive verification of program behavior in a reason-
able amount of time. Furthermore, the quality of the output
is also influenced by the automation engineer’s knowledge
and experience in selecting pertinent testing sequences that
may correspond to typical dangerous circumstances of the
controlled process [68]. To address these problems, formal

VOLUME 4, 2023 423

LILLI ET AL.: FORMAL VERIFICATION OF THE CONTROL SOFTWARE OF A RADIOACTIVE MATERIAL REMOTE HANDLING SYSTEM

TABLE 1. Description of the LTL Specifications Verified With NuSMV in the HHM Model

verification techniques have been established, which provide
methods for closed-loop (plant and controller) model check-
ing able to analyze a program in its entirety.

V. FORMAL VERIFICATION
The formal verification of finite-state systems, such as closed-
loop control algorithms, has been effectively accomplished in
the last ten years thanks to symbolic model checking based
on BDDs. These tools have been developed in the past to
overcome the state explosion problem in finite automata [47].
Model checking is the process of exploring the reachable
states of a model, which is described as an FSM, in order
to validate temporal logic specifications. When a property
is violated, the tool provides a counterexample in the form
of a sequence of states [46]. As previously mentioned, the
most well-known open-source model detection tools among
the available solutions are NuSMV and SPIN. In particular,
because of its extensive core capabilities and good scalabil-
ity, NuSMV is frequently used for reliability and security
verification of industrial designs [69]. This tool supports the
representation of synchronous and asynchronous finite-state
systems, and it allows for the verification of both linear
temporal logic (LTL) and computation tree logic (CTL) spec-
ifications using implicit methods. In more detail, it compares
a model against a property using a symbolic representation of
the specification [70].

Accurate modeling of the real system is essential in order
to validate the intended behavior of the device and detect
potentially undesirable states. This enables simulation and
verification of the apparatus prior to its actual operation. Since
the model is an abstraction, it may not include all relevant
characteristics of the real-world system or the context in
which it is embedded. Hence, a condensed version of the plant
FB can be used to create a reduced formal model, which can
then be verified utilizing symbolic model checking techniques
thanks to the NuSMV tool. As an illustration, in the pre-
sented use case, the AXE_CMD FB only takes into account the

beginning, intermediate, and final states rather than the motion
dynamic considered in the real system. This approximation is
still acceptable because the goal at this stage is to assess the
possible blockage within two locations instead of the specific
stop positioning.

Table 1 describes a collection of LTL expressions that
have been developed to identify potential critical problems.
Specifications 1–3 are meant to ensure that none of the three
linear motion axis plants enters the error state during system
execution. On the other hand, requirements 4 and 5 deal with
potential collision detection. More in detail, the first verifies
that trolley movements are inhibited when the crane is not
fully raised in the top position, and the second focuses on
the system configuration occurring while positioning the TIS
unit within the shielding box. Similarly to the last scenario,
the trolley must not move, while the elevator is raised and
the crane is lowered. Specification 6 aims to confirm that the
gripper only opens in a specific location: when the TIS unit
is lowered within the box (elevator up and crane down). A
batch script, detailed in Listing 1 in the Appendix, has been
developed to examine all the aforementioned requirements
with NuSMV and log data.

The LTL specifications were evaluated in two different
scenarios to test the reliability of the formal verification. As
described in Section III, the SEQUENCE FB implements an
FSM where the HHM axis movements are executed sequen-
tially to prevent any potential collision. If we specifically
consider state GRC_03_GRC_04 in Fig. 9, which corre-
sponds to the TIS unit picked up by the HHM Cartesian
manipulator, the subsequent path toward the shielding box
shall be carried out in three distinct steps: 1) backward move-
ment of the trolley axis; 2) lowering of the crane axis; and 3)
rising of the elevator. The described motion sequence and the
correspondent states are visible in Fig. 9(b). In our research,
we deliberately induced a design flaw in the control software
to determine if NuSMV was able to identify it. Specifically,
we updated the main FSM to launch the previously mentioned
actions in a parallel execution, with the three motion axes

424 VOLUME 4, 2023

FIGURE 9. Comparison of the two investigated control sequences. (a) ECC of the controller FB implementing the parallel movement of the three linear
axes. (b) ECC in which the three movements are executed sequentially.

moving simultaneously, as shown in Fig. 9(a). Since it does
not always result in a fault condition, this type of design
error is particularly difficult to identify through conventional
simulations. The relative motion axes speeds do, in fact, affect
the likelihood of a collision. This implies that we may be able
to perform multiple simulations without observing any failure
event. The following section discusses how adding nondeter-
minism to the model can make it more realistic by taking into
account the impact of nonidealities found in the real world
and allowing for the early identification of potential system
defects. With regard to the test under discussion, NDTs within
axes plant FBs seek to change the amount of time required to
get the POS_REACHED signal, directly impacting the relative
speed between concurrent axis movements. The violation of
LTL specification 5 in Table 1 allows for the detection of the
collision occurrence.

A. DISCRETE-STATE PLANT MODELING IN FBS WITH NDTS
The original system, created to exploit the visualization and
online verification capabilities provided by EcoStruxure Au-
tomation Expert, needs to be reduced and adapted in order

to apply formal verification methods. The elevator, trolley,
and crane components were modeled in this study by a sim-
plified FB that embodies the intended behavior of the actual
system while omitting the features used for visualization. As
opposed to the simulation scenario where each component
was modeled using a single FB, this global plant model has
been implemented to capture the behavior of the three lin-
ear motion axes collectively. Thus, by discretizing the plant
model’s FB while maintaining its functional capabilities, the
original complex model can be reduced to a simpler represen-
tation. The AXE_PLANT component features two data inputs
(GO and POS_IN) and two data outputs (POS_REACHED
and POS_OUT). The system may simulate real-world behav-
ior using the NDT event’s random signal emission, which
enables the discovery of previously undetected faults using
CTL or LTL specifications. As an example, Fig. 10 depicts
a potential scenario in which an NDT has been introduced
in the ECC associated with elevator plant FB. In this case,
the plant enters the GO state upon receiving the controller’s
GO signal, and following the NDT event, it reaches the END
state. The physical meaning of this NDT is that the transition

VOLUME 4, 2023 425

LILLI ET AL.: FORMAL VERIFICATION OF THE CONTROL SOFTWARE OF A RADIOACTIVE MATERIAL REMOTE HANDLING SYSTEM

FIGURE 10. Example of injection of an NDT within the elevator plant
model.

between the GO and END states, i.e., the axis motion towards
a given position, might take an unspecified amount of time.
If a NOT_GO signal is generated while the plant is in the GO
state, it enters the STOP state and remains there until another
GO signal is activated. In the END state, the plant notifies
the controller that the task has been completed by setting
the value of POS_REACHED signal to TRUE. Following the
deactivation of the GO signal, the plant returns to the HOME
state.

The gripper plant model features two data inputs, OPEN
and CLOSE, and two data outputs, GRO and GRC. The model
initially enters the OPENING state when the controller sets
OPEN to TRUE. Second, it switches to the OPEN state in
response to an NDT signal. Similarly, when the controller sets
CLOSE to TRUE, the plant reaches the CLOSING state and,
following a random time delay caused by the NDT, enters the
CLOSED state. If the CLOSE command is activated during
the OPENING state, the model transitions to the CLOSING
state. If the OPEN command is activated during the CLOSING
state, the plant returns to the OPENING state and awaits for the
emission of the NDT signal. The discrete-state model of the
HHM was converted into an SMV model using the FB2SMV
tool. Subsequently, the verification has been carried out by
NuSMV, using an Intel core i7-10510U CPU@1.80 GHz
2.30 GHz with 32-Gb RAM. In an effort to mitigate the
state-space explosion problem, NDTs have gradually been
introduced into different sections of the model according to
the scenarios in Table 2. The progressive integration of NDTs
might be viewed as a feature of the proposed toolchain. While
it is true that critical faults might occur as a result of multiple
nondeterministic conditions acting simultaneously, in a first
verification stage, distinct blocks can be assessed indepen-
dently while maintaining the execution time within reasonable
limits.

B. TRACE ANALYSIS USING FBME
In our work, we used FBME [65], enhanced with trace
visualization and in-depth analysis capabilities, to examine

TABLE 2. NDT Scenarios Analyzed in the Study: NDTs are Progressively
Included in the Model

counterexamples and find the causes of violations of require-
ments.

One of the nontrivial tasks when using formal verification is
to analyze the resulting counterexample. Verifiers frequently
offer an output trail in a text format that is inconvenient
and confusing to the user. As a result, the user has to make
additional efforts to analyze the counterexample. The IEC
61499 code presents additional challenges due to the auto-
matic generation of the model for the verifier, which leads the
counterexample to utilize the notations of the input model.
Given an output trace, the following natural step is to deter-
mine the location of the error and investigate the underlying
causes. The nonimperative nature of IEC 61499 further com-
plicates this process. Moreover, current common IEC 61499
software development tools do not provide in-depth trace
analysis capabilities.

FBME is an integrated development environment (IDE) for
IEC 61499 applications, currently under active development
at the Luleå University of Technology (LTU). FBME is a
cross-platform, open-source, modular IDE that is based on
IntelliJ IDEA and the meta programming system (MPS) [71].
The MPS provides powerful tools for developing custom
domain-specific languages and also provides a platform for
creating custom IDEs. Modularity and extensibility are key
features of FBME, so the LTU has also extended FBME’s
functionality by adding enhanced capabilities to the visualiza-
tion and automatic analysis of IEC 61499 program execution
traces and counterexamples. The functionality to automati-
cally call NuSMV and generate a model for verification was
also seamlessly integrated into FBME.

The trace analysis in FBME is shown in Fig. 11. Trace is
stored in unified format [64] and can be obtained from differ-
ent sources: either from a simulation of the verifier model,
as a counterexample, or from the actual execution of the
IEC 61499 program. The entire trace history is displayed on
panel 1©. The user selects the trace step of interest and can
examine the state of the system. The values of all variables,
message counters and other data are also displayed on the
diagram itself (panel 2©), where changes that have occurred
in the current step are highlighted. In addition to clear vi-
sualization of the trace, FBME uses powerful techniques for

426 VOLUME 4, 2023

FIGURE 11. FBME trace analysis.

its in-depth analysis. By examining the preceding code, this
method enables the user to visually locate the section of the
code that resulted in the problem. Visual explanation allows us
to establish causal relationships between different trace events
(note that the term “event” here is used in a broader sense, as
a change in system state, rather than an event in IEC 61499
terms). For instance, it might be possible to determine whether
a variable modification, an IEC 61499 event emission, or a
change in an ECC state produced a specific event. In this way,
the cause of the violation of a requirement can be identified.
An example of the result of visual explanation technique is
available in window 3©.

VI. RESULTS AND DISCUSSION
The initial phase of the project, which followed the software
remodeling based on IEC 61499, was devoted to validating
the model by launching various simulations directly within
the EcoStruxure Automation Expert suite. This was achieved
through the use of CATs, which allow FBs to be directly
linked to HMI objects. The application model and the HMI
have been developed independently. Once sufficiently stable,
the HMI plant FB was connected to the controller FBs, replac-
ing the existing simplified version of plant FBs. Launching
the online simulation, the user can monitor the sequence ex-
ecution. The software will begin in the initial state, progress
through specific checkpoints, and eventually reach the final
state. Unfortunately, even if the simulation does not report
any errors, this merely indicates that there exists a path where
it crosses all the checkpoints. Hence, using symbolic model
checking tools will provide a more thorough level of inves-
tigation. Prior to the verification procedure, it is crucial to
verify the accuracy of the formal model. This can be accom-
plished by simulating the model in NuSMV, where various

paths and random states are explored. The simulation assists
in demonstrating that the model properly covers all the ECC
states of the behavioral FB by tracing the path of ECC states. It
also helps to confirm that the generated formal model behaves
in accordance with the discrete-state model by providing in-
formation about the values of all the variables in each state.
The NuSMV simulation technique can detect changes in the
ECC and their impact on system behavior. Initially, using this
method, it will be possible to confirm that all paths leading
from the beginning to the end will pass through the crucial
checkpoint. As the second step, this assertion needs to be
proven even in the presence of nondeterminism. Indeed, the
introduction of NDTs may have resulted in the inclusion of
certain additional pathways in the application, and this is re-
flected in a larger state space with multiple routes. In contrast
to simulation, where we can test only one scenario, NDTs
allow us to evaluate several possibilities. The evidence that
the given specifications are validated in all of these paths will,
thus, extend the results of the online simulation. The six for-
mulated properties have been checked using a batch script that
reads the supplied SMV model and performs the verification,
logging both the execution time and result for each specifica-
tion. The quantity of memory needed to store and manipulate
BDDs is the primary limitation of model checking methods.
In light of this, the proposed implementation allows for the
gradual integration of NDTs into the model. This stepwise
approach provides better control over the model and allows for
faster specification analysis. The time required for NuSMV
to execute the formal verification of all the described LTL
specifications while altering the number of NDTs is depicted
in Fig. 12. It is evident that the gradual inclusion of NDTs
resulted in a global increase in execution time. Because of the
ample state space, it is feasible that with a larger number of

VOLUME 4, 2023 427

LILLI ET AL.: FORMAL VERIFICATION OF THE CONTROL SOFTWARE OF A RADIOACTIVE MATERIAL REMOTE HANDLING SYSTEM

FIGURE 12. Execution time required by NuSMV in different NDTs’ configuration.

NDTs, global verification of all pathways will fail. Reducing
the number of NDT points in this situation may be a viable
option for squeezing the state space to a tolerable size and
then gradually increasing it. Bounded model checking is an
alternate strategy that searches for a counterexample in execu-
tions whose length is constrained by some number k. If no bug
is discovered, k is increased until either a bug is discovered,
the problem becomes unmanageable, or some predetermined
upper bound is reached [46]. A key feature of the described
engineering framework is the ability to govern nondetermin-
ism. NDTs can be injected into specific locations to perform
formal verification in a particular configuration. This method
allows us to validate the automation system under particular
stress conditions. As discussed in Section V, the IEC 61499
application was formally verified following the purposeful
introduction of a design fault that might potentially lead to
a collision occurrence. Despite the difficulties in identifying
this failure condition using conventional simulations, NuSMV
was able to successfully accomplish this task, thus providing a
counterexample that demonstrates the violation of LTL prop-
erty 5 in Table 1. In the case under study, the amount of time
needed for the formal verification was comparable with what
was required for the same LTL expression in Scenario 7 (see
Fig. 12). However, it is difficult to formulate a generic state-
ment because the duration depends on the particular paths that
lead to the failure conditions. The evidence of the violation
is provided by NuSMV in the form of a failure trace, which

FIGURE 13. Graphical visualization of the counterexample trace produced
by NuSMV when an LTL specification is violated.

depicts a state sequence of system model transitions where
the specification is not met. Fig. 13 shows how, through the
use of specific visualization tools [53], it would be possible to
decode the output trace and examine the path that led to the
violation. This result is of great significance as it showcases
how the presented set of tools can be employed in the veri-
fication of complex safety-critical control systems, enabling
the early detection of potential failure conditions that would

428 VOLUME 4, 2023

be extremely difficult to spot through traditional simulation
and testing techniques.

VII. CONCLUSION AND FUTURE WORK
In this article, we showed how to use an integrated toolchain
for the analysis and verification of the control software for a
real safety-critical automated system employed in the trans-
port and storage of radioactive material in a nuclear research
facility. The provided use case was intended to demonstrate
the actual feasibility of integrating the phases of modeling,
simulation, verification, and analysis in a complex system
using an automatic procedure. The study benefited from the
software redesign based on the IEC 61499 standard for several
kinds of reasons. First, it enabled the optimization of code
structure by defining standardized, modular, and reusable FBs
based on specific ECCs. Second, it allowed for the explicit
specification of the relationships and dependencies between
FBs while eliminating the incorporation of global variables.
Third, it supported the translation of the code into an SMV
model, thereby enabling formal verification of LTL safety
specifications. Finally, the incorporation of NDTs within dif-
ferent FBs facilitated the simulation of sequence execution
under realistic conditions. The developed IEC 61499 solu-
tion’s portability promotes the system to be integrated into
various toolchains. In the proposed example, we investigated
this feature by combining it with FB2SMV and FBME for
the verification of a set of LTL safety specifications. While
the first tool is used to extract the software formal model,
model verification is subsequently carried out using NuSMV.
FBME, on the other hand, is a comprehensive tool, capable
of automating the entire verification process by incorporating
automatic model generation, NuSMV verification, visualiza-
tion, and analysis of counterexample trace. The suggested
toolchain can be instrumental in the early identification of de-
sign flaws that could result in potential mechanical collisions.
The presented results emphasize the validity of the toolchain
by demonstrating the benefits of formal system verification
in detecting nontrivial design errors that may result in a fail-
ure event under specific circumstances. A key feature of the
proposed solution, in addition to modularity and portability,
is the deep control over localized NDT introduction. This
capability can be effective in reducing the process complexity,
permitting independent testing of specific FBs, and keeping
the time required by model checking within reasonable limits.
One limitation of the presented methodology resides in the
accuracy with which the IEC 61499 model represents the
actual system. Indeed, the necessity for mitigating the state
explosion problem ultimately led to the adoption of a simpli-
fied design, especially with regard to plant FBs. Ensuring a
high level of accuracy between the model and its real-world
equivalent is crucial during this phase. Furthermore, in the
provided use case, we investigated a single, albeit critically
important, remote handling procedure. Further developments
will allow the software model to be expanded to include more
system motion sequences and plant details, thus finalizing the

development of a digital twin of the primary SPES remote
handling system.

APPENDIX NUSMV SCRIPT

LISTING 1. Batch script used to check the LTL specifications with NuSMV.

REFERENCES
[1] Programmable Controllers. Part 3: Programming Languages, Standard

IEC 61131-3:2013, Int. Electrotech. Commission, Geneva, Switzerland,
2013.

[2] Function Blocks—Part 1: Architecture, Second Edition, Standard IEC
61499, Int. Electrotech. Commission, Geneva, Switzerland, 2012.

[3] A. Zoitl and R. Lewis, Modelling Control Systems Using IEC 61499,
vol. 95, 2nd ed. London, U.K.: IET, 2014.

[4] T. Marchi et al., “The SPES facility at Legnaro National Laboratories,”
J. Phys.: Conf. Ser., vol. 1643, no. 1, 2020, Art. no. 12036.

[5] A. Andrighetto et al., “SPES: An intense source of neutron-rich ra-
dioactive beams at Legnaro,” J. Phys.: Conf. Ser., vol. 966, no. 1, 2018,
Art. no. 012028.

[6] A. Andrighetto et al., “The ISOLPHARM project: ISOL-based produc-
tion of radionuclides for medical applications,” J. Radioanalytical Nucl.
Chem., vol. 322, no. 1, pp. 73–77, Oct. 2019.

[7] S. Corradetti et al., “The SPES target production and characteriza-
tion,” Nucl. Instrum. Methods Phys. Res., B: Beam Interact. Mater. At.,
vol. 488, pp. 12–22, Feb. 2021.

[8] A. Monetti et al., “The RIB production target for the SPES project,”
Eur. Phys. J. A, vol. 51, no. 10, pp. 1–11, Oct. 2015.

[9] G. Lilli, L. Centofante, M. Manzolaro, A. Monetti, R. Oboe, and
A. Andrighetto, “Remote handling systems for the selective produc-
tion of exotic species (SPES) facility,” Nucl. Eng. Technol., vol. 55,
pp. 378–390, Jan. 2023.

[10] D. I. Khan, S. Virtanen, P. Bonnal, and A. K. Verma, “Functional
failure modes cause-consequence logic suited for mobile robots used at
scientific facilities,” Rel. Eng. Syst. Saf., vol. 129, pp. 10–18, Sep. 2014.

[11] A. Donzella et al., “Residual activation of the SPES front-end system:
A comparative study between the MCNPX and FLUKA codes,” Eur.
Phys. J. A, vol. 56, no. 2, pp. 1–13, Feb. 2020.

[12] L. Centofante et al., “Study of the radioactive contamination of the ion
source complex in the selective production of exotic species (SPES)
facility,” Rev. Sci. Instrum., vol. 92, no. 5, May 2021, Art. no. 53304.

[13] W. Dai, C. Pang, V. Vyatkin, J. H. Christensen, and X. Guan, “Discrete-
event-based deterministic execution semantics with timestamps for
industrial cyber-physical systems,” IEEE Trans. Syst., Man, Cybern.,
Syst., vol. 50, no. 3, pp. 851–862, Mar. 2020.

VOLUME 4, 2023 429

LILLI ET AL.: FORMAL VERIFICATION OF THE CONTROL SOFTWARE OF A RADIOACTIVE MATERIAL REMOTE HANDLING SYSTEM

[14] S. Patil, D. Drozdov, and V. Vyatkin, “Adapting software design pat-
terns to develop reusable IEC 61499 function block applications,” in
Proc. IEEE 16th Int. Conf. Ind. Inform., 2018, pp. 725–732.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. München, Germany:
Pearson Deutschland GmbH, 1995.

[16] D. Drozdov, V. Dubinin, S. Patil, and V. Vyatkin, “A formal model
of IEC 61499-based industrial automation architecture supporting
time-aware computations,” IEEE Open J. Ind. Electron. Soc., vol. 2,
pp. 169–183, 2021.

[17] L. Sonnleithner, B. Wiesmayr, V. Ashiwal, and A. Zoitl, “IEC 61499
distributed design patterns,” in Proc. IEEE Int. Conf. Emerg. Technol.
Factory Autom., 2021, pp. 1–8.

[18] J. H. Christensen, Design Patterns for Systems Engineering With IEC
61499. Magdeburg, Germany: Otto-Von-Guericke-Universitaet, 2000.

[19] “Model-view-controller design pattern.” 2008. [Online]. Available:
https://folk.universitetetioslo.no/trygver/themes/mvc/mvc-index.html

[20] M. Bonfé, C. Fantuzzi, and C. Secchi, “Design patterns for model-based
automation software design and implementation,” Control Eng. Pract.,
vol. 21, no. 11, pp. 1608–1619, Nov. 2013.

[21] G. Čengić, O. Ljungkrantz, and K. Åkesson, “A framework for compo-
nent based distributed control software development using IEC 61499,”
in Proc. IEEE Int. Conf. Emerg. Technol. Factory Autom., 2006,
pp. 782–789.

[22] V. Vyatkin, S. Karras, and T. Pfeiffer, “Architecture for automation
system development based on IEC61499 standard,” in Proc. IEEE 3rd
Int. Conf. Ind. Inform., 2005, pp. 13–18.

[23] R. Hametner, A. Zoitl, and M. Semo, “Automation component architec-
ture for the efficient development of industrial automation systems,” in
Proc. IEEE Int. Conf. Autom. Sci. Eng., 2010, pp. 156–161.

[24] V. Vyatkin and H. M. Hanisch, “A modeling approach for verification
of IEC1499 function blocks using net condition/event systems,” in Proc.
IEEE Symp. Emerg. Technol. Factory Autom., 1999, pp. 261–270.

[25] H. M. Hanisch, M. Hirsch, D. Missal, S. Preuße, and C. Gerber, “One
decade of IEC 61499 modeling and verification—Results and open
issues,” IFAC Proc. Vol., vol. 42, no. 4, pp. 211–216, Jan. 2009.

[26] V. Vyatkin, H. M. Hanisch, C. Pang, and C. H. Yang, “Closed-loop
modeling in future automation system engineering and validation,”
IEEE Trans. Syst., Man Cybern. C, Appl. Rev., vol. 39, no. 1, pp. 17–28,
Jan. 2009.

[27] I. Hegny, M. Wenger, and A. Zoitl, “IEC 61499 based simulation frame-
work for model-driven production systems development,” in Proc. IEEE
15th Int. Conf. Emerg. Technol. Factory Autom., 2010, pp. 1–8.

[28] C. H. Yang and V. Vyatkin, “Transformation of simulink models to IEC
61499 function blocks for verification of distributed control systems,”
Control Eng. Pract., vol. 20, no. 12, pp. 1259–1269, Dec. 2012.

[29] N. Galkin, M. Ruchkin, V. Vyatkin, C. W. Yang, and V. Dubinin, “Auto-
matic generation of data centre digital twins for virtual commissioning
of their automation systems,” IEEE Access, vol. 11, pp. 4633–4644,
2023.

[30] M. Xavier, S. Patil, V. Dubinin, and V. Vyatkin, “Formal modelling,
analysis, and synthesis of modular industrial systems inspired by Net
condition/event systems,” in Proc. Int. Conf. Appl. Theory Petri Nets
Concurrency, 2023, pp. 16–33.

[31] R. Sinha, S. Patil, L. Gomes, and V. Vyatkin, “A survey of static formal
methods for building dependable industrial automation systems,” IEEE
Trans. Ind. Inform., vol. 15, no. 7, pp. 3772–3783, Jul. 2019.

[32] E. M. Clarke, O. Grumberg, D. Kroening, D. Peled, and H. Veith, Model
Checking. Cambridge, MA, USA:MIT Press, 1999.

[33] K. Schneider, Verification of Reactive Systems, Formal Methods and
Algorithms. Berlin, Germany: Springer, 2004.

[34] C. Baier and J.-P. Katoen, Principles of Model Checking. Cambridge,
MA, USA: MIT Press, 2008.

[35] G. E. Gelman, K. M. Feigh, and J. Rushby, “Example of a complemen-
tary use of model checking and agent-based simulation,” in Proc. IEEE
Int. Conf. Syst., Man, Cybern., 2013, pp. 900–905.

[36] H. Wang, D. Zhong, and T. Zhao, “Avionics system failure analysis and
verification based on model checking,” Eng. Failure Anal., vol. 105,
pp. 373–385, Nov. 2019.

[37] V. Todorov, F. Boulanger, and S. Taha, “Formal verification of auto-
motive embedded software,” in Proc. 6th Int. FME Workshop Formal
Methods Softw. Eng., 2018, pp. 84–87.

[38] J. H. Kim, K. G. Larsen, B. Nielsen, M. Mikučionis, and P. Olsen,
“Formal analysis and testing of real-time automotive systems using
UPPAAL tools,” in Proc. 20th Int. Workshop Formal Methods Ind. Crit.
Syst., 2015, pp. 47–61.

[39] P. Filipovikj, N. Mahmud, R. Marinescu, C. Seceleanu, O. Ljungkrantz,
and H. Lönn, “Simulink to UPPAAL statistical model checker: Ana-
lyzing automotive industrial systems,” in Int. Symp. Formal Methods,
2016, pp. 748–756.

[40] A. Pakonen, I. Buzhinsky, and K. Björkman, “Model checking reveals
design issues leading to spurious actuation of nuclear instrumenta-
tion and control systems,” Rel. Eng. Syst. Saf., vol. 205, Jan. 2021,
Art. no. 107237.

[41] E. Jee et al., “FBDverifier: Interactive and visual analysis of counterex-
ample in formal verification of function block diagram,” J. Res. Pract.
Inf. Technol., vol. 42, no. 3, pp. 171–188, 2010.

[42] E. Németh and T. Bartha, “Formal verification of safety functions by
reinterpretation of functional block based specifications,” in Proc. Int.
Workshop Formal Methods Ind. Crit. Syst., 2009, pp. 199–214.

[43] B. F. Adiego et al., “Applying model checking to industrial-sized PLC
programs,” IEEE Trans. Ind. Informat., vol. 11, no. 6, pp. 1400–1410,
Dec. 2015.

[44] I. Buzhinsky and A. Pakonen, “Symmetry breaking in model checking
of fault-tolerant nuclear instrumentation and control systems,” IEEE
Access, vol. 8, pp. 197684–197694, 2020.

[45] A. Cimatti and A. Griggio, “Software model checking via IC3,” in Proc.
24th Int. Conf. Comput. Aided Verification, 2012, pp. 277–293.

[46] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded
model checking,” Adv. Comput., vol. 58, 2003, Art. no. 117.

[47] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang,
“Symbolic model checking: 1020 states and beyond,” Inf. Comput.,
vol. 98, no. 2, pp. 142–170, Jun. 1992.

[48] L. C. Cordeiro, E. B. de L. Filho, and I. V. Bessa, “Survey on automated
symbolic verification and its application for synthesising cyber-physical
systems,” IET Cyber-Phys. Syst.: Theory Appl., vol. 5, no. 1, pp. 1–24,
Mar. 2020.

[49] A. Cimatti et al., “NuSMV 2: An opensource tool for symbolic model
checking,” in Proc. 14th Int. Conf. Comput. Aided Verification, 2002,
pp. 359–364.

[50] G. J. Holzmann, “The model checker SPIN,” IEEE Trans. Softw. Eng.,
vol. 23, no. 5, pp. 279–295, Mar. 1997.

[51] I. Beer, S. Ben-David, H. Chockler, A. Orni, and R. Trefler, “Explaining
counterexamples using causality,” Formal Methods Syst. Des., vol. 40,
no. 1, pp. 20–40, Feb. 2012.

[52] P. Ovsiannikova, I. Buzhinsky, A. Pakonen, and V. Vyatkin, “Oeritte:
User-friendly counterexample explanation for model checking,” IEEE
Access, vol. 9, pp. 61383–61397, 2021.

[53] A. Pakonen, I. Buzhinsky, and V. Vyatkin, “Counterexample visualiza-
tion and explanation for function block diagrams,” in Proc. IEEE 16th
Int. Conf. Ind. Informat., 2018, pp. 747–753.

[54] K. Loer and M. D. Harrison, “An integrated framework for the anal-
ysis of dependable interactive systems (IFADIS): Its tool support
and evaluation,” Autom. Softw. Eng., vol. 13, no. 4, pp. 469–496,
Oct. 2006.

[55] T. Bochot, P. Virelizier, H. Waeselynck, and V. Wiels, “Paths to
property violation: A structural approach for analyzing counter-
examples,” in Proc. IEEE Int. Symp. High Assurance Syst. Eng., 2010,
pp. 74–83.

[56] S. Patil, V. Vyatkin, and C. Pang, “Counterexample-guided simulation
framework for formal verification of flexible automation systems,” in
Proc. IEEE Int. Conf. Ind. Inform., 2015, pp. 1192–1197.

[57] V. Vyatkin, “IEC 61499 as enabler of distributed and intelligent automa-
tion: State-of-the-art review,” IEEE Trans. Ind. Inform., vol. 7, no. 4,
pp. 768–781, Nov. 2011.

[58] V. Vyatkin and H. M. Hanisch, “Formal modeling and verification in the
software engineering framework of IEC61499: A way to self-verifying
systems,” in Proc. IEEE Int. Conf. Emerg. Technol. Factory Autom.,
2001, pp. 113–118.

[59] M. Xavier, V. Dubinin, S. Patil, and V. Vyatkin, “Plant model generation
from event log using ProM for formal verification of CPS,” Nov. 2022,
arXiv:2211.03681.

[60] M. Xavier, V. Dubinin, S. Patil, and V. Vyatkin, “Process mining in
industrial control systems,” in Proc. IEEE Int. Conf. Ind. Inform., 2022,
pp. 1–6.

[61] M. Xavier, V. Dubinin, S. Patil, and V. Vyatkin, “An interactive learning
approach on digital twin for deriving the controller logic in IEC 61499
standard,” in Proc. IEEE Int. Conf. Emerg. Technol. Factory Autom.,
2022, pp. 1–7.

[62] D. Drozdov, “FB2SMV: IEC 61499 function blocks XML code
to SMV converter,” 2014. [Online]. Available: https://github.com/
dmitrydrozdov/fb2smv

430 VOLUME 4, 2023

https://folk.universitetetioslo.no/trygver/themes/mvc/mvc-index.html
https://github.com/dmitrydrozdov/fb2smv
https://github.com/dmitrydrozdov/fb2smv

[63] M. Xavier, S. Patil, and V. Vyatkin, “Cyber-physical automation sys-
tems modelling with IEC 61499 for their formal verification,” in Proc.
IEEE Int. Conf. Ind. Informat., 2021, pp. 1–6.

[64] T. Liakh, R. Sorokin, D. Akifev, S. Patil, and V. Vyatkin, “Formal model
of IEC 61499 execution trace in FBME IDE,” in Proc. IEEE Int. Conf.
Ind. Informat., 2022, pp. 588–593.

[65] “Function blocks modelling environment (FBME),” 2020. [Online].
Available: https://github.com/JetBrains/fbme

[66] E. A. Lee and S. A. Seshia, Introduction to Embedded Systems—A
Cyber-Physical Systems Approach. Cambridge, MA, USA: MIT Press,
2017.

[67] P. Ovsiannikova and V. Vyatkin, “Towards user-friendly model check-
ing of IEC 61499 systems with counterexample explanation,” in Proc.
IEEE 26th Int. Conf. Emerg. Technol. Factory Autom., 2021, pp. 01–04.

[68] C. Schnakenbourg, J. M. Faure, and J. J. Lesage, “Towards IEC 61499
function blocks diagrams verification,” in Proc. IEEE Int. Conf. Syst.,
Man Cybern., 2002, pp. 210–215.

[69] Z. Xu, D. Zhong, W. Li, H. Huang, and Y. Sun, “Formal verification of
dynamic hybrid systems: A NuSMV-based model checking approach,”
in Proc. ITM Web Conf., vol. 17, 2018, Art. no. 03026.

[70] M. Frappier, B. Fraikin, R. Chossart, R. Chane-Yack-Fa, and M. Ouen-
zar, “Comparison of model checking tools for information systems,” in
Proc. 12th Int. Conf. Formal Eng. Methods Formal Methods Softw. Eng.,
2010, pp. 581–596.

[71] “JetBrains MPS–Meta programming system,” 2020. [Online]. Avail-
able: https://www.jetbrains.com/mps

GIORDANO LILLI was born in 1990. He received
the B.Sc. and M.Sc. degrees in mechatronic en-
gineering in 2012 and 2015, respectively, from
the University of Padova, Vicenza, Italy, where he
is currently working toward the Ph.D. degree in
mechatronics and product innovation engineering.

In 2016, he joined the three-year Fellowship
Program with the European Organization for Nu-
clear Research (CERN), Geneva, Switzerland, as
an Automation Control Engineer and worked on
the commissioning of safety-critical robots at the

ISOLDE and MEDICIS facilities. Since 2019, he has also been responsible
for the development of the remote handling systems for the Selective Pro-
duction of Exotic Species Facility, Legnaro National Laboratories, Istituto
Nazionale di Fisica Nucleare, Legnaro, Italy.

MIDHUN XAVIER (Student Member, IEEE) re-
ceived the B.Tech. degree in electronics and com-
munication engineering from the SCMS School
of Engineering and Technology, Kochi, India, in
2014, and the master’s degree in computer science
from the Indian Institute of Information Technol-
ogy, Trichy, India, in 2017. He is currently working
toward the Ph.D. degree with the Luleå Univer-
sity of Technology, Luleå, Sweden, with a major
in formal verification and modeling of industrial
automation systems using IEC 61499 standard.

He is also an accomplished software engineer with three years of experi-
ence in data analytics and web application development. He has worked with
several esteemed organizations such as Uvionics Pvt. Ltd., TCS, and RCKR
software Pvt. Ltd. in India, as a Software Engineer.

ETIENNE LE PRIOL was born in Paris, France,
in 2000. He received the University Diploma of
Technology in mechanical engineering from the
University Institute of Technology of Cachan, in
2020.

In 2022, he decided to pursue manufacturing
studies involving automation lectures with École
Normale Supérieure Paris-Saclay, Gif-sur-Yvette,
France. In the summer of the same year, he be-
gan automation research in IEC 61499 with Aalto
University, Espoo, Finland. In 2023 he became a

Mechanical Engineering professor after passing the National Competitive
examination “Agrégation”.

VINCENT PERRET was born in Dijon, France,
in 1999. He is working toward the master’s de-
gree in pedagogy applied to higher education with
the Department of Mechanical Engineering, École
Normale Supérieure Paris-Saclay, Gif-sur-Yvette,
France.

In 2021, he studied mechanical engineering and
automation with École Normale Supérieure Paris-
Saclay. In 2022, he joined Aalto University, Espoo,
Finland, as an intern to study the IEC61499 stan-
dard and made research about formal verification

and monitors.

TATIANA LIAKH (Member, IEEE) received the
master’s degree in automation of physical and tech-
nical research from the Department of Physics,
Novosibirsk State University, Novosibirsk, Rus-
sia, in 2013, and the Ph.D. degree in engineering
(mathematical modeling, numerical methods, and
program complexes) from the Institute of Automa-
tion and Electrometry of the Siberian Branch of the
Russian Academy of Sciences (IA&E SB RAS), in
2021.

Her thesis title was “Dynamic verification of
process-oriented control programs for cyber-physical systems.” Since 2021,
she has been a Postdoctoral Researcher with the Luleå University of Technol-
ogy, Luleå, Sweden. Her research interests include cyber-physical systems,
control software, domain-specific language tools, verification, robotics, in-
dustrial automation, and IEC 61499.

ROBERTO OBOE (Fellow, IEEE) was born in
Lonigo, Italy, in 1963. He received the Laurea de-
gree (cum laude) in electrical engineering and the
Ph.D. degree in industrial electronics and informat-
ics from the University of Padova, Padova, Italy, in
1988 and 1992, respectively.

He is currently an Associate Professor of Au-
tomatic Control with the Department of Man-
agement and Engineering, University of Padova,
Vicenza, Italy. His research interests include the
fields of motion control, applied digital control,

telerobotics, haptic devices, rehabilitation robots, and applications of micro-
electromechanical systems to motion control.

Dr. Oboe is a Co-Editor-in-Chief for IEEE TRANSACTIONS ON INDUSTRIAL

ELECTRONICS and IEEE OPEN JOURNAL OF THE INDUSTRIAL ELECTRONICS

SOCIETY.

VALERIY VYATKIN (Fellow, IEEE) received the
Ph.D. degree in applied computer science from
Taganrog State University of Radio Engineering,
Taganrog, Russia, in 1992, the Dr. Eng. degree in
electrical engineering from the Nagoya Institute
of Technology, Nagoya, Japan, in 1999, and the
Habilitation degree from the Ministry of Science
and Technology of Sachsen-Anhalt, Magdeburg,
Germany, in 2002.

He is currently the Chaired Professor with the
Luleå University of Technology, Luleå, Sweden,

and a Full Professor with Aalto University, Espoo, Finland. Previously, he was
a Visiting Scholar with the University of Cambridge, Cambridge, U.K., and
had permanent academic appointments in New Zealand, Germany, Japan, and
Russia. His research interests include dependable distributed automation and
industrial informatics, software engineering for industrial automation sys-
tems, artificial intelligence, distributed architectures, and multiagent systems
applied in various industry sectors, including smart grid, material handling,
building management systems, data centers, and reconfigurable manufactur-
ing.

Dr. Vyatkin was a recipient of the Andrew P. Sage Award for the Best IEEE
Transactions Paper in 2012. He has been the Chair of the Technical Commit-
tee on Industrial Informatics of the IEEE Industrial Electronics Society (IES)
since 2016 and the Vice-President of the IEEE IES for technical activities for
the term 2022–2023.

VOLUME 4, 2023 431

https://github.com/JetBrains/fbme
https://www.jetbrains.com/mps

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

