Plant Model Generator from Digital Twin for
Purpose of Formal Verification

Midhun Xavier*, Johannes Hakansson*, Sandeep Patil*, Valeriy Vyatkin* f
* Department of Computer Science, Computer and Space Engineering, Lulea Tekniska Universitet, Sweden
TDepartment of Electrical Engineering and Automation, Aalto University, Espoo, Finland

Email: midhun.xavier@Itu.se, johhki-4 @student.ltu.se, sandeep.patil @ltu.se, vyatkin@ieee.org

Abstract—This paper reports on a method of automatic gen-
eration of a formal model of plant from the behaviour traces
recorded from its digital twin. The traces are observed from
simulation in the loop of the digital twin in Visual Components
connected with distributed automation software, developed in
NxtSTUDIO according to IEC 61499. The generated modular
formal model of the closed-loop system is transformed to the
model of uncontrolled plant behaviour extended with non-
determinism. The model is then combined in closed-loop with
the formal model of controller, generated from its source code
using the fb2smv tool. The verification and simulation is done by
the symbolic model checker NuSMYV tool, which verifies various
CTL/LTL specifications of the system.

Index Terms—Model synthesis from traces, Formal verifica-
tion, Plant Modelling, State machine generation

I. INTRODUCTION

Formal verification of automation systems is a promising
technique to automatically verify the correctness and safety
of automation systems. In particular, verification by model
checking in closed-loop helps to identify the flaws in model’s
design via counter examples, but development of formal plant
models is resource consuming. The model checking [1] is the
efficient way to prove system’s correctness for safety critical
applications and it is also used because software used to
design the industrial automation systems has less computation
complexity and uses limited amounts of data structures.

Process mining [2] [3] [4] has been quite popular in the past
decades which extracts process models from event logs. This
paper [5] describes an algorithm which is used to produce the
process model in the form of Petri nets from a recorded event
log. The formal process model [6] can be used to identify the
various specifications of the system. In this paper, a formal
process model is constructed with the help of recorded event
log.

The same time, simulation models are widely used for
manufacturing systems, they are popular for purposes of
illustration, virtual commissioning, maintenance, etc. The sim-
ulation model does not ensure 100% verification and validation
automation systems. It would be great if it was possible to
take advantage of their existence and automatically generate
the formal models.

The author of [7], solves the problem of automatic plant
model construction from existing specification, but it was

focusing mainly on process systems. This paper aims at de-
veloping a similar method for discrete manufacturing systems.

This paper builds upon previous work from [8] but the
key differences are related to state machine generation. The
previous work is based on the state machine generation for
a controller using traces from a real controller, whereas
this paper takes a look at state machines and formal model
generation of a plant using traces from a digital twin model
of the plant. The generated model’s behaviour is evaluated
by verifying the functional properties of the plant. This paper
explores an approach to automatically generate plant models
of control systems from traces of digital twin and ensures that
the generated formal model consists of desired plant behaviour.

II. CASE STUDY

As a case study, the Energy Autarkic Actuators and Sensors!
(EnAS), a test bed located at Aalto University, representing
a small scale industrial production scenario and is used for
the development and testing of various industrial automation
techniques. Included with sets of pneumatic operators such as
jacks and grippers, motor driven conveyors and laser sensors.

An accurate simulation model of EnAS has been developed
using Visual Components 3D simulation environment. In this
research, the simulation model was connected in the loop with
the automation controllers. Therefore, every reference to the
plant is referred to the digital twin version, unless specifically
stated. Figure 1 shows the visual representation of the digital
twin. The major components are the main plant, the Automated
Guided Vehicle (AGV), and the IRB. The following part briefly
explains the major software applications used.

The controller for the plant is created using nxtSTUDIO and
the controller is connected to the plant in Visual Components
via OPC UA communication protocol, so that the controller
can receive status updates from the plant, as well as control
the plant through various signals.

The data collected by the plant is used for generating a
formal model with the help of a proposed algorithm and it
can be coded in any language. Here a Python script is used
to restructure the data and create the desired model from the
traces. The generated plant model is evaluated with the help
of a symbolic model checker tool NuSMYV, which is used to
verify and check certain properties of a system.

Thttps://www.energieautark.com/

Fig. 1. S1) Isolated IRB-subsystem of plant, S2) Isolated AGV-subsystem of
the plant, S3) Main section of the plant

A. Digital Twin Component Isolation

Isolating components from the holistic view of the system
enables us to explore parts of the system independently. The
idea comes from partial order reduction [9]. Our knowledge
of the system can be utilized to deduce plenty of information
to remove irrelevant data.

The entire plant, presented in Visual Components, is divided
into smaller subsystems. The first subsystem is the mobile
robot ABB IRB 14000 (IRB) in the top-left corner. This can
be viewed as an isolated system in figure 1 (S1).

This specific part of the system does the following actions:
the robot moves from initial position to main plant, it fetches
an object from a specified position from the main plant, then
it returns to initial position with the object and feeds the
object away from the process by placing the object on the
conveyor belt. To this subsystem, interesting part from a global
view, whether the position on the main line is vacant or not,
anything other than this in the main system is irrelevant to this
subsystem.

Similarly, Figure 1 (S2) is its own subsystem named AGYV,
which includes a moving robot with a conveyor belt on top.
The task for this subsystem is to move from the initial position
towards the main plant and connect to a set point of the main
conveyor line. It may then feed an object into the system along
the conveyor belt. Relevant information to this subsystem is
whether the conveyor belt connected to is running or not. All
other information is irrelevant. A full view of the main section
of the plant can be seen in figure 1 (S3). As we dive deeper
into the details of the main plant, we have split it into six
parts, each with different components and functionality. They
are depicted in their isolated form in the figure 2.

Each subsystem of the plant is kept as small as possible.
This is due to the fact that it is easier to work with a smaller
state space. If we consider the entire system, the state space
will be huge and state space explosion may occur. Therefore,
we divided the system into smaller sections, So we only
need to consider a few parameters, hence the complexity will

Fig. 2. Isolated Cl-subsystem of the plant, Isolated C2-subsystem of the
plant, Isolated C3-subsystem of the plant, Isolated C4-subsystem of the plant,
Isolated C5-subsystem of the plant, Isolated C6-subsystem of the plant.

decrease substantially. The following points briefly explain
about each of the different subsystems.

o The subsystem in figure 2 (C1), contains a black conveyor
belt that runs from right-to-left, a gripper that grips
objects from above and two sensors: one in the gripper
and one on the conveyor belt below the gripper.

o The subsystem in figure 2 (C2) has a conveyor belt that
runs from right-to-left, a sensor over the belt to detect
objects, and an overhead camera.

o The subsystem in figure 2 (C3) consist of a conveyor belt
that moves from bottom-to-top, a sensor across the belt
to detect objects, a sledge that may hold details, and a
jack that can move details between the sledge and the
conveyor belt.

o The subsystem in figure 2 (C4) has a black conveyor belt
that runs from left-to-right, A gripper that grips objects
from above, and two sensors: one in the gripper and one
on the conveyor belt below the gripper.

o The subsystem in 2 (C5) has a conveyor belt that runs
from left-to-right, a sensor over the belt to detect objects,
and an overhead camera.

e The subsystem in figure 2 (C6) has a conveyor belt that
moves from top-to-bottom, a sensor across the belt to
detect objects, a sledge that may hold details, and a jack
that can move details between the sledge and the conveyor
belt. Once an object leaves the bottom part of figure 2
(C2), it joins at the start of subsystem 2 (C3) again.

B. Proposed Solution Approach

The solution works as follows in Figure 3: the digital
twin communicates with the controller which is designed in
IEC 61499 standard with the help of NXT control software.
Function block representation of controller in XML file is
then fed to fb2smv tool, which generates SMV code for
controller and also provides skeleton structure for plant model
to incorporate closed loop verification of the whole system.
The digital twin application records the behavior of the plant
and the output from the application is added to a trace file.
The trace file consists of a raw text describing the behavior of
the plant. The model generator creates a model file depending
on the order of recorded actions in the trace file. Formal model

Model
Generator

Formal model
Digital Twin of plant

Formal model
of controller

Fig. 3. Structure of the solution approach.

Trace file

Model
Checker

FB XML

file J

Nxt Control fb2smv

of plant is then added into the smv skeleton structure provided
by the fb2smv tool. The functional properties of the system
and safety properties are added to the model file prior to
model checking. The updated model is fed to the symbolic
model checker tool NuSMV which verifies the CTL/LTL
properties of the system. The NuSMV determines whether the
specifications are TRUE or return the counter examples which
show where and how our properties do not hold true.

III. FORMAL MODEL GENERATION FROM TRACE

In Visual Components, whenever an action occurs, it records
the event into a trace file. Each event contains timestamp,
subsystem, component and action. First events in a trace
file are sorted based on timestamp and then classified to
its corresponding subsystem level. While generating a model
from the trace, we can either consider the complete trace of the
system or we can specify two time slots to create the model
only for a specific section. We can test each part of the system
but we must know the time intervals when the desired section
was executed.

The functionality for taking the traces and turning them
into a model is done through an algorithm. The basic SMV
code structure of the plant model is created with the help of
model generator algorithm 1, which is a brief description of
an actual script. Model generator sorts the trace according to
the ascending order of timestamp, declares and initializes each
component’s variables and finally transitions of each variable
is identified by analyzing each entry in the trace.

IV. CLOSED LOOP VERIFICATION OF PLANT MODEL FROM
DIGITAL TWIN

The process to reach the goal is split into following parts,
trace generation from the digital twin, model generation from
the generated trace, embedding the plant model into SMV
code structure provided by the fb2smv tool and updated smv
code is given for verification using NuSMV. Through every
iteration of these steps, more aspects are considered and issues
are rectified, until a final working model is generated.

The formal verification can be done using the NuSMV tool
but it is required to convert the controller and plant model to
SMV format. The SMV code of the controller is created by the
fb2smv tool and the plant model SMV code is generated by
analyzing log trace with the help of model generator algorithm.
In order to do formal verification of the system, we need to

Algorithm 1 Model generator
0: function MODELGENERATOR
1: Set the initial values by running the method addInitial Val-
ues
2: Set lower time limit
3: Set upper time limit.(Default time is between 0-3600
seconds)
4: Sort the desired trace by running the method sort-
Trace(filename, lower time, upper time).
: Add "MODULE main” to model file.
: Add ”VAR” to model file.
: for every component in components do
Declare all variables in the component with specified
data type
9: end for
10: Add ”ASSIGN” to model file.
11: for every component in components do
12: Add all variables in the component with initial value.
13: end for
14: for every component in components do
15 Add "next(component):= case” to the model file
16: for every entry in trace do

© NN W

17: if the entry in trace caused the change for the variable
then
18: Add the constraints as conditions and the action of
the entry as action to the model file.
19: end if

20: end for

21: Add "TRUE:component;” to the model file.
22: Add esac;” to the model file.

23: end for

combine the controller smv code and plant model smv code.
We created a function block skeleton structure for a plant
model with simple ECC in NXT studio software and it is
connected to the controller. Whenever the controller generates
a control signal, the plant goes to the process state and updates
the sensor values.

The following challenges occurred while combining the
plant model into SMV code structure provided by the fb2smv
converter.

A. Receiving control signals from controller to plant

The plant model goes to different states based on the control
signals so these control signals should be given to the plant. It
is possible to add the control signals by declaring, initializing
and assigning control signal value from the controller. The
following example shows how Jack control signals (extend
signal) are transferred to the plant model.

VAR J1_extend_value boolean ;

init(J1_extend_value):= FALSE;

next(J1_extend_value):= case
event_REQ J1_extend_value_ ;
TRUE : J1_extend_value;

esac ;

P Controinput changes

a) b)

noT

7\
[)retracted

P s

in_motion_to staru/)) in_motion_to_sledge in_motion_to_start(
N NG \ __/

N N

7N\
(| retracted

)) at_sledge ateopl) [)at_sledge
J/ —

\/ i h ~ >

' \.
[)in_motion_to_cup \ /) in-motien_to_cup
_/ _

Fig. 4. a) state machine equivalent obtained after applying model generator
algorithm b) Final jack model state machine with control signal and NDTs

B. Jack Logic Design

The figure 4 (a) shows the state machine obtained from
SMV code of its plant model. This state machine needs
to be modified in order to attain the accurate behavior of
the jack. Initially the state machine was moving directly
from retracted” state to “at_sledge” via an intermediate state
”in_motion_sledge”. Non-deterministic transitions in motion
states helps to achieve the similar behavior of the model
which is used to identify the flaws that exist in the system
via verifying CTL/LTL properties. The figure 4 (b) shows
the final structure of the state machine with non-deterministic
transitions. The following SMV code represents jack logic
with NDTs.

) in_motion_to_sledge

next(C5_jack_position) := case

C5_jack_position = retracted & J1_down_value:
in_motion_to_sledge;

C5_jack_position = in_motion_to_sledge & NDT:
at_sledge;

C5_jack_position = at_sledge & J1_extend_value

in_motion_to_cup;

C5_jack_position = in_motion_to_cup & NDT:
at_cup;

C5_jack_position = at_cup & (!(J1_down_value))
& (!(J1_extend_value)):
in_motion_to_start;

C5_jack_position = in_motion_to_start & NDT:
retracted ;

TRUE: C5_jack_position;

esac;

C. Passing sensor values to controller

The sensor values of the plant need to be transferred to the
controller, These sensor values help the controller to make the
next decision according to the plant condition. The following
example shows how jack’s top sensor value is given to the
controller.

next(J1_top_value_):= case
C5_jack_position=retracted : TRUE;
1(C5_jack_position=retracted): FALSE;
TRUE J1_top_value_;

esac ;

V. CONCLUSION AND FUTURE PLAN

We implemented the SMV model of the conveyor subsystem
and connected to the controller for closed loop verification.

Testing and validation is done with the help of NuSMV by
checking various properties of the system.The analysis of the
solution yields a promising result. The model generator is
consistent in generating a formal model of a plant because the
specification of the formal model provides the expected output
for more than one trace file. The resulting general solution is
derived from one digital twin. To improve the legitimacy of
the solution, it should be applied to another system to see if
it actually works.

We need to make sure that the digital twin records all
possible traces in the plant otherwise the verification process
may fail. Ensuring the digital twin contains all problematic
traces that are possible in the plant could be the next step in
future.

The implementation of a tool which automates analysis and
verification of system properties requires an extensive devel-
opment process. However, it is possible to come a long way
with automatic generation, with minor additions to finalize the
process. Another point of future work that was not explored at
all, but might be an area of interest, is simultaneous running of
analysis alongside the actual plant. In this approach we need
to generate the model during run-time instead of generating
a model using traces from a specified time. The benefits of
this approach makes system analysis in real time instead of
after-the-fact.

ACKNOWLEDGMENT

This work was sponsored, in part, by the H2020 project
1-SWARM co-funded by the European Commission (grant
agreement: 871743). We are also thankful to Visual Com-
ponenets (https://www.visualcomponents.com/) for providing
with licenses for the 3D simulation tool.

REFERENCES

[1] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification of
finite-state concurrent systems using temporal logic specifications,” ACM
Transactions on Programming Languages and Systems (TOPLAS), vol. 8,
no. 2, pp. 244-263, 1986.

[2] J. E. Cook and A. L. Wolf, “Discovering models of software processes
from event-based data,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 7, no. 3, pp. 215-249, 1998.

[3] R. Agrawal, D. Gunopulos, and F. Leymann, “Mining process models
from workflow logs,” in International Conference on Extending Database
Technology. Springer, 1998, pp. 467-483.

[4] J. E. Cook and A. L. Wolf, “Event-based detection of concurrency,” ACM
SIGSOFT Software Engineering Notes, vol. 23, no. 6, pp. 35-45, 1998.

[S] W. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining:
discovering process models from event logs,” IEEE Transactions on
Knowledge and Data Engineering, vol. 16, no. 9, pp. 1128-1142, 2004.

[6] V. Vyatkin, H.-M. Hanisch, C. Pang, and C.-H. Yang, “Closed-loop
modeling in future automation system engineering and validation,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), vol. 39, no. 1, pp. 17-28, 2008.

[7] 1. Buzhinsky and V. Vyatkin, “Plant model inference for closed-loop
verification of control systems: Initial explorations,” in 2016 IEEE 14th
International Conference on Industrial Informatics (INDIN), 2016, pp.
736-739.

[8] D. Chivilikhin, S. Patil, K. Chukharev, A. Cordonnier, and V. Vyatkin,
“Automatic state machine reconstruction from legacy programmable logic
controller using data collection and sat solver,” I[EEE Transactions on
Industrial Informatics, vol. 16, no. 12, pp. 7821-7831, 2020.

[9] D. Peled, Partial-Order Reduction. = Cham: Springer Inter-
national ~Publishing, 2018, pp. 173-190. [Online]. Available:
https://doi.org/10.1007/978-3-319-10575-8¢

