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Abstract—In this paper, we describe a method to automatically
derive the controller for an automated process by an interactive
learning approach using a simulation model developed in Visual
Components 3D simulation software. The latter is used to record
the events of the processes and the controller is generated as an
IEC 61499 function block. To create different process scenarios,
the actuator signals are triggered manually in appropriate order.
The controller logic in Petri net is derived by process discovery
algorithms with help of recorded events and conversion of Petri
net to IEC 61499 function blocks is done by a software tool
configured with a set of transformation rules.

Index Terms—cyber-physical automation systems, IEC 61499,
Process discovery, Visual Components

I. INTRODUCTION

Design and validation of Cyber-Physical system’s (CPS)
[1] in industrial automation takes significant time due to the
complex interaction of intelligent mechatronic components
equipped with embedded control devices. The IEC 61499
standard [2] is considered a suitable approach to design
such systems, but the manual development process is still
considered to be error-prone, and it takes a lot of development
effort.

Simulation models are very useful for validation, virtual
commissioning purposes and to accurately describe the be-
havior of the automation systems. The controllers can be
connected with the simulation models to understand better how
the developed control code behaves on it.

In this paper we attempt to go a step further and use
simulation models for deriving control code without program-
ming, but as a result of interactive activity. The control code
generated from this data-driven approach greatly reduces the
engineering effort to program such systems.

The simulation models are easier to interact with than with
the real production line. It is possible to record the events
that occur in the simulation model. To record the sequence of
events, one needs to generate a process scenario and trigger
the controller signal manually. The recorded event log is used
for the extraction of controller logic with the help of process
mining algorithm. The powerful mining tools like ProM [3],
DISCO [4], etc., can be of great help to automate this process.

The Visual Components [5] 3D simulation software is one
of the commercially available tools. The actuator and sensor
signals can be manually triggered with the help of this tool.

The paper is organized as follows: Section II discusses the
related work and problem statement. Section III explains the
methodology for event log generation, extraction of controller
logic in detail. Section IV describes the illustrative example of
a simulation model and presents the result of the work. Finally,
Section V concludes the paper and outlines future goals.

II. RELATED WORKS AND PROBLEM STATEMENT

The process mining technique [6] [7] is widely used to
extract the business process models and improve the business
by analyzing it. The business process models extracted from
trace of activities gives a better representation of process
scenarios and these models can be used for conformance
checking. ProM [3] is one of the popular open-source tools
used for the purpose of discovering the process models, con-
formance checking, verification of event log, visualization, and
simulation of process models. Process mining is not widely
explored in the field of industrial control systems but some of
the researchers used this for conformance analysis of industrial
control systems.

Data and Process Mining Applications on a Multi-Cell
Factory Automation Testbed [8] explains how process min-
ing can be applied in factory automation. In this approach,
industrial control systems record event logs, create a process
model using control flow algorithms and then it is used for
the improvement of factory automation. Anomaly detection
using event log is another area of research that can be applied
in industrial control systems and this paper [9] describes
anomalous activity in the control system by comparing the
device log data with the process model. The deviation in
event log can be identified by conformance checking and this
helps to identify the cyber-attacks in the system. The outlier
detection and alarm analysis of industrial plants can be done
through the process mining technique [10]. The recorded event
logs are stored in a database and the model is constructed using
a process discovery algorithm. The verification of the event log
with respect to the derived process model is used for outlier
detection.

Paper [11] explains extraction of the formal model of plant
from event logs for the purpose of verification. The formal
model of plant from traces expressed in SMV is verified by
CTL specifications with the help of NuSMV symbolic model



Fig. 1. Methodology

checker. The process mining application is not all explored
to derive the control logic or plant model with the help of
recorded events of the system. In this paper, we propose a
methodology to derive the control algorithms automatically
from the traces of the desired behavior of the system.

III. METHODOLOGY

The Figure 1 shows the workflow which starts with record-
ing the events with the help of a simulation model. The user
interacts with the simulation model by manually controlling
signals and each event occurred in the system is recorded
in event log in CSV format. The event log contains the
process information about the system, and it is used to
extract the process model in terms of Petri net [12] using
process discovery algorithm. The Petri net in Petri Net Markup
Language (PNML) format is given as input to TINA [13]
tool for the stepwise simulation and conversion of Petri net
to reachability graph. The reachability graph is converted to
a deterministic finite state machine and its representation in
GraphML helps to visualize the process model and finally the
implementation of Controller function block is done with the
help of transformation rules. The detailed explanation of the
methodology is given in the following subsections III-A, III-B
and III-C.

A. Event log generation

The plant model is constructed in the Visual Components
3D environment. The simulation model works according to
the actuator signal values and it shows working behavior of
the system as well as the output as sensor values. Here, we
are manually changing the actuator signal values and making

Fig. 2. Process Model to Function Block Interface Transformation

the system work in accordance with the process scenario.
If we want to run a simulation model in a different way,
then it is possible to generate such a process scenario by
manually triggering the actuator signals. The simulation model
developed in the Visual Component tool helps to record these
events. The event log records the ’caseId’ for each process run,
global state of the system, time and component at which the
event occurred, and finally records signal and its corresponding
value. The detailed description and representation of example
log construction is explained in Section IV.

B. Process model discovery from event log in terms of Petri
net

The recorded event log consists of overall behavior of each
process scenario executed in the simulation. To extract the
process behavior from the event log, we use process discovery
algorithms. Most of the Process discovery algorithms extract
the process models in Petri net format [14] and it is easy
to understand and visualize the system behavior. The alpha
algorithm [15] helps to derive the process model from the
recorded event log. The ProM tool has several process dis-
covery algorithms so this tool can be used to process create
models in form of Petri net. It is also possible to apply the
alpha algorithm directly but ProM helps also in event log pre-
processing, model visualization, conformance checking etc.
The event log expressed in eXtensible Event Stream (XES)
is given as input for the process discovery algorithm and
conversion of CSV to XES is done with the help of ProM
by mapping standard XES attributes under ’Case’ and ’Event’
columns.

C. Petri net to IEC 61499 function blocks for controller

The Petri net extracted from the event log is used to derive
the controller logic and it is represented as the Execution
Control Chart (ECC) of an IEC 61499 function block. As a
rule, corresponding events are associated with the transitions
of Petri nets, which are used to describe processes. The event
can be treated as one of the necessary conditions for firing
the transition. However, it should be noted that “nameless”
transitions are possible in the net model, which can fire
spontaneously, without being stimulated by any event.



Fig. 3. FSM to ECC transformation rule

The reachability graph of a Petri net (if it is finite) is in fact
a finite state machine (FSM). When it is constructed for Petri
nets describing processes, the FSM can also have spontaneous
transitions and, thus, in general the resulting FSM will be
a non-deterministic one. To simplify implementation, a non-
deterministic FSM should be transform to deterministic one.
In this case, determinization will be reduced to getting rid of
spontaneous transitions.

The TINA system [13] is used to analyze Petri nets and build
a reachability graph. It can take Petri net in PNML format as
an input and produces the reachability graph in text format.
In order to convert the non-deterministic FSM to deterministic
FSM and visualize the derived FSM, our software tool called
’Converter of TINA reachability to GraphML’ is used. The
deterministic FSM in XML format can be visualized using
Gephi [16] or Yed [17] GraphML editors and it represents the
whole process workflow of the entire closed-loop system.

1) TINA reachability graph to GraphML application:

This methodology can be used for the generation of the
plant model and implementation of the monitor to identify any
deviation from the existing process scenario. To incorporate
these functionalities later, we need to extend this approach by
introducing an intermediate FSM model (otherwise Petri net
can be directly used to generate ECC).

Below the transformation of the textual representation of
the reachability graph of a Petri net (which, in fact, is a FSM)
in the TINA modeling system to the GraphML [18] format
used to represent attribute graphs, is considered.

The conversion process can be divided into three phases:
1) Reading textual input data and generating internal pro-

gram data structures on their basis.
2) Determinization of the FSM.
3) Generating the output GraphML file.

The presence of the second phase is explained by the
fact that so called ”spontaneous” transitions can exist in
the finite state models. The spontaneous transition is not
associated with any input signal and can be activated at any
time. In finite automata theory, spontaneous transitions are
marked with the symbol λ (lambda). In the TINA system,
such transitions of Petri nets ported from the ProM system
[19] are denoted as ‘tau’. A FSM containing spontaneous
transitions can be considered non-deterministic, so it becomes
necessary to determine it. The advantage of the deterministic
FSM is the simplicity of its implementation. In addition,
when determining by getting rid of spontaneous transitions,
the number of states of the FSM decreases.

In this work, two approaches to the determination of this
type are used. The first method is based on the contraction
of arcs representing spontaneous transitions, and the second
one is based on the reachability principle. The essence of the
first approach is as follows: two states connected by a lambda
arc are merged into one state. In this case, the incoming and
outgoing arcs of both states are combined, and the lambda
arc is removed. This rule is applied until there are no lambda
arcs left in the converted FSM. However, this method is not
universal so it is applicable only in the case of a tree-like
topology of lambda arc connection. In the second (universal)
method, two states are contracted (merged) into one state only
if one state is reachable from another state through a chain of
lambda arcs.

The FSM model in TINA is represented as a set of de-
scriptions of states and transitions in a text file with the
.kts extension. Each state is described by the following text
fragment (in EBNF form):
state < numericIDofsourcestate >

trans< inputsignalname > /
< numericidentifieroftargetstate >

The structure of the description of the FSM model in the
GraphML format is as follows. First, there is a description of
the attributes of the graph model using the < key > tag, for
example:
< keyattr.name = ”label”id = ”label”attr.type =

”string”for = ”node”/ >

< keyattr.name = ”EdgeLabel”id = ”edgelabel”
attr.type = ”string”for = ”edge”/ > 4

In this case, the label attribute of string type is described for
graph vertices, as well as the edgelabel attribute of string type
is described for graph arcs. Next, there is a set of < node >
tags that describe the vertices of the graph. In the automaton
interpretation, these vertices are states of the FSM. Example
description below:
< nodeid = ”8” >< datakey = ”label” >

8 < /data >< /node >

To designate transitions (arcs) between automaton states the
< edge > tag is used, which contains the following attributes:
id is a transition identifier; source is an identifier of the source
state of the transition; target is an identifier of the target state
of the transition. The < edge > tag has a nested < data >



tag that defines the name of the transition. The example of a
transition description is below:

< edgeid = ”8”target = ”0”source = ”9” >
< datakey = ”edgelabel” > Repeat < /data >
< /edge >
To represent the result FB, a special FB markup language is

used, described in the second part of the IEC 61499 standard.
The < InterfaceList > tag with nested < EventInputs >
and < EventOutputs > tags is used to describe a FB
interface, which consists of input and output events. A separate
event is described by < Event > tag. The < BasicFB >
tag describes a basic FB. It has the embedded < ECC > tag
corresponding to an ECC. The ECC, in turn, consists of states
(< ECState > tags) and transitions (< ECTransition >
tags). Actions in states are defined by < ECAction > tags.

Algorithm 1: FSM to ECC Transformation
Data: M = (List < States >,List < Arcs >)
States = {s0, s1, s2, . . . }
Arcs = {a0, a1, a2, . . . }
si = (namei, outSignali)
aj = (namej , sourcej , targetj)
control signals = {c0, c1, c2, . . . }
Result: TM = (List < States >,List < Arcs >)
TM States = {List < States >}
TM Arcs = {List < Arcs >}
for arc in M Arcs do

TM Arcs.add(arc)
end
for state in M States do

TM States.add(state)
end
for arcs in TM arcs do

if control signals has arc.name then
index source = findIndex(TM States =>
TM state.name = arc.source)

TM state[index source].outSignal =
arc.name
for arcSource in TM Arcs do

if arcSource.source = arc.target then
arcSource.source← arc.source

end
end
TM Arcs.remove(arc)
TM States.remove(arc.target)

end
end

2) Transformation of FSM to Controller FB in IEC 61499:

The obtained FSM expressed in GraphML from the reach-
ability graph consists of a list of states and a list of edges or
arcs.

M = (List < States >,List < Arcs >) (1)

Each state consists of a name and output event signal. This
output signal is initialized to null and it can be assigned to the
control signal while transformation rules are applied.

si = (namei, outSignali) (2)

The edge has source state , target state and name (i.e. sensor
or actuator signal).

aj = (namej , sourcej , targetj) (3)

To derive the controller logic, we need to apply the transfor-
mation rules on top of the derived FSM. Whenever an actuator
signal value occurs at the edge of FSM then the following rules
are applied.

• The corresponding edge and its target state are removed
from the ECC.

• Actuator signal triggers as an output event at the source
state of the removed edge

• The edge starts from the removed state is connected back
to the source state of removed edge.

The interface of the controller is shown in the Figure 2.
Controller function block takes all sensor signals as input
events and produces actuator signals as output. The FSM of the
process model is converted to ECC using the transformation
rule. If control signal Ci is triggered from state qi to qk then
the state qj is removed from ECC and state qi produces ci
event.

The Figure 3 explains the FSM to ECC transfor-
mation with the help of an example case from Fig-
ure 6. The Conv Robotino Run Cmd True is a control
signal and FSM takes different paths according to the
sensor values of the Conveyor3 detected True and Con-
veyor3 detected Bad Workpiece and this pattern is expressed
in the Figure 3. When the control signal appears on the
edges of the FSM then the rule is straight-forward i.e. control
signals replaced by ’1’ signal and their respective output place
produce corresponding control signal as output. It is possible
to simplify the ECC further by removing edges with condition
“1” or “True” and its target state. The transformation from
FSM to ECC is represented as the Algorithm 1.

IV. CASE STUDY : AUTOMATIC GENERATION OF
CONTROLLER BY INTERACTIVE LEARNING

A. General Description of simulation in Visual Components’
3D environment

The plant model constructed in Visual Components 3D
manufacturing simulation software tool is shown in the Fig-
ure 4. The production system consists of a conveyor line,
composed of 2 conveyor sections ( conveyor3 and conveyor4
), gripper and autonomous guided vehicle Robotino with a
conveyor section mounted on top. Conveyor1 and Conveyor2
are not connected to the production line and never used in this
experiment.

There are six actuators and four sensors on the pro-
duction system. The conveyor line composed of Con-
veyor3 and Conveyor4 has one actuator each for to run



Fig. 4. Simulation in Visual Components

the conveyor i.e. Conveyor3 run cmd = True for start-
ing the conveyor and Conveyor3 run cmd = False
to stop it. Likewise, Conveyor3 and Conveyor4 have one
sensor each for detecting workpiece (Conveyor3 detected
and camera1 sensor c4 detected). The Gripper com-
ponent can move upwards and downwards with help
of Gripper1 extend cmd. In order to grab and re-
lease the workpiece, the Gripper component uses the
Gripper1 close cmd actuator signal. It consists of two sen-
sors, the Gripper1 extended sensor which helps to determine
whether the gripper extended or not and the Gripper1 closed
sensor to identify whether the workpiece is released or not.
Robotino component creates a workpiece ( a 3D object looks
like a cup) and connects with the conveyor line to transfer the
workpiece for further processing. The following table shows
all actuator and sensor signals used for this experiment.

Actuator signals
Conveyor Robotino run cmd True
Conveyor Robotino run cmd False
Conveyour3 run cmd True
Conveyour3 run cmd False
Conveyor Robotino create new cup cmd True
Conveyor Robotino create new cup cmd False
Gripper1 extend cmd True
Gripper1 extend cmd False
Conveyour4 run cmd True
Conveyour4 run cmd False
Gripper1 close cmd True
Gripper1 close cmd False
Sensor signals
Conveyour3 detected BadWorkPiece
Conveyour3 detected True
Conveyour3 detected False
Camera1 sensor c4 detected empty
Gripper1 extended 30.0
Gripper1 opened 5.0
Gripper1 vertical retracted 0.0
Gripper1 closed 0.0

The 3D view in simulation gives better understanding about
the system’s behavior. It is possible to construct different
processing traces by manipulating the actuator signals. This

Fig. 5. Event log

plant has two processing scenarios, the first scenario explains
normal behavior of the system whenever a work piece arrives
and the second one describes how the plant reacts whenever
a bad work piece is detected.

The processing sequence of the plant is as follows:
1) Robotino creates a new 3D object of the workpiece (i.e.

structure like a cup) and it transfers the workpiece to
the conveyor3.

2) Conveyor3 starts running and stops at the point where
Gripper can grab the workpiece. Gripper processes the
workpiece and places it back to the conveyor3 and then
the conveyor starts running, transferring the workpiece
to conveyor4 and this process is repeated in a cyclic
order.

3) Whenever a bad workpiece is detected then Gripper does
not perform any actions.

B. Event log Description

The different traces in the event log are generated by
following appropriate triggering of actuator signals manu-
ally. These events are recorded in CSV format as shown
in the Figure 5 and it consists of six columns: CaseId,
State, TimeStamp, Component, Signal and Value. CaseId is
unique for each processing sequence scenario, State is the
encoded combination signal values of sensors and actuators,
TimeStamp represents the time at which the event is triggered
and finally, the combination of Component, signal and value
column helps to form a complete description of an activity of
an event. The State is a string value constructed by joining the
encoded signal values of sensors and actuators and it helps to



Fig. 6. a) The Petri net during its step-wise simulation observation b) The obtained FSM from Petri net

determine the unique status of the system. The event log is
sorted according to the timestamp and is taken for the further
process. The event log expressed in CSV format is converted to
XES format because most of the process discovery algorithms
accept this format. To convert CSV to XES format, it is
necessary to specify the ’Case’ and ’Event’ columns. The
’Case’ column is selected as ’CaseId’ and the combination
of component, signal, value and state as the ’Event’ column.

C. FSM generation from event log

The process discovery method is used to identify the be-
havior of the system. In order to extract the process from the
system, the process mining algorithm called alpha is applied
on top of the recorded event log and it converts the process
sequences to a Petri net. The obtained Petri net is shown in
Figure 6 (a) during its step-wise simulation observation. The
initial marking on ’Start’ place is added for the simulation
and conversion purpose of Petri net. To achieve the process
to run in cyclic, a new transition ’Repeat’ is added which
connects from ’End’ to ’Start’. The finite reachability graph
can be considered as a Finite State Machine and the TINA tool
helps to construct the reachability graph from the Petri net and
save it in text format. The reachability graph expressed in text
format is converted to deterministic FSM in GraphML format
is done with help of our software tool ’TINA reachability
graph to GraphML application’. FSM representation can be
edited or visualized with help of GraphML editor tools like
Gephi, Yed etc. The FSM representation in Yed GraphML
editor is shown in the Figure 6 (b). The obtained FSM consists
of two loops: First loop explains normal working behavior of
the plant and the second one is the shorter one that explains
’How does the system behave whenever a bad workpiece
arrives?’ and the ’Repeat’ signal makes the FSM run in cycles.

D. IEC 61499 representation of Controller

The FSM extracted from the event log describes the whole
system behavior. To derive the controller in IEC 61499 stan-
dard, we use the transformation rules that were discussed ear-
lier. The IEC 61499 function block interface of the controller is
shown in the Figure 7 (a). It consists of sensor signals as input
events and actuator signals as output events. The ’State’ string
can be neglected because it was used to identify the unique
state in FSM. The ECC of the controller is shown in the Figure
7 (b). Whenever any actuator signal appears on the edges of
FSM is transformed as output events and sensor signals remain
the same as condition in ECC. The consecutive edges without
any conditions in ECC (i.e. ideally ”True” or ”1” condition)
can be merged into the common state and all actuator signals
can be expressed as events in a separate ’Action’ of ECC.
The event ’Repeat’ is changed to ’R’ because ’Repeat’ is a
keyword in NxtStudio software.

V. CONCLUSION AND FUTURE WORK

The interactive learning approach helps to create controller
in IEC 61499 function block automatically. The developed
approach gives promising results. The process logic expressed
in FSM helps to understand the process in a better way. The
working of the same simulation model under different process
scenarios can be implemented as a different controller function
block. It is possible to drive the system by activating the
actuator signals and this simple approach helps in deriving
the same process logic.

The proposed approach requires the global state information
of the system and it needs to be recorded on the event log
whenever an event occurs. It is difficult to get a ‘snapshot’ of
the states of all sensors when there is a current active event. To
do this, we must poll all sensors but there will be considerable
time delays in the transmission of the information via the



Fig. 7. a) Function block interface of Controller b) ECC representation in of Controller

network, so the data read from the sensors will be marked
with different timestamps than the event’s timestamp. The
distributed controllers in the network consist of synchronized
clocks with all the sensor readings where time stamped could
be used but this makes the system more complex and sensor
polling time delays remain the same.

This approach needs to be validated and tested in different
simulation models or even in real systems to determine the
accuracy of the extracted controller logic. The development
of optimal ECC of complex systems consisting of multiple
controllers is considered as the next step in the future. Formal
verification of the system helps to identify the possible errors
before deploying an automatically generated controller on the
real system. The IEC 61499 formal verification tool chain
[20] integrated with the proposed approach can be used for
automatic verification and validation using specifications.
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