
Developing a Test Suite for Evaluating IEC 61499
Application Portability

Midhun Xavier∗, Tatiana Laikh∗, Sandeep Patil∗, Valeriy Vyatkin∗ ‡
∗ Department of Computer Science, Computer and Space Engineering, Lulea Tekniska Universitet, Sweden

‡Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland

Email: midhun.xavier@ltu.se, tatiana.laikh@ltu.se, sandeep.patil@ltu.se, vyatkin@ieee.org

Abstract—This paper presents the creation of a series of
function blocks with the specific aim of testing the portability of
IEC 61499 applications across diverse development and runtime
environments. These function blocks have been developed to
cover a wide range of test scenarios, including basic data
types, functions, boundary conditions, and adapter features.
The function blocks can be conveniently exported or imported
through the use of XML files, thus facilitating seamless testing. By
testing the runtime environment of different IEC 61499 systems,
these function blocks help to identify and highlight any possible
issues that may arise related to portability.

Index Terms—Industrial Control System, IEC 61499, Testing,
Portability

I. TESTING IEC 61499 APPLICATIONS: ENSURING
PORTABILITY ACROSS DIFFERENT ENVIRONMENTS

The IEC 61499 standard [1] has been developed to ad-
dress the increasing demands for decentralized control and
the exponential growth of control complexity in industrial
automation systems, with the aim of establishing an open,
component-oriented, and platform-independent development
framework to improve the re-usability, reconfigurability, inter-
operability, portability [2], and distribution of control software
for complex distributed systems. The IEC 61499 technology
can be effectively used in the implementation of Intelligent
Mechatronic Components and engineering processes, using
multiple commercial tools and hardware platforms [3].

The paper [4] highlights the importance of addressing
portability issues in existing engineering tools for the IEC
61499 standard in order to achieve better interoperability and
efficiency in distributed control systems. Testing IEC 61499
applications for adequate functionality is crucial in guarantee-
ing their compatibility across various development and runtime
environment [5]. To this end, a function blocks library has
been designed for testing the basic data types, functions, and
boundary conditions, among other key scenarios. A guideline
document has been provided to help developers understand
the desired results of testing and to modify the test with new
values if necessary.

By enabling developers to test their IEC 61499 applications
for portability using the developed standard testing function
blocks, the likelihood of errors can be minimized and the
efficiency and effectiveness of distributed industrial control
systems can be improved.

II. TEST FUNCTION BLOCK DESIGN AND DEVELOPMENT

A. Data Type testing FBs

1) BitStringDataType: The BitStringDataType function
block (FB) is used to test the support of data types and
their association for Bit data types, including BOOL, BYTE,
WORD, DWORD, and LWORD. The testing procedure for the
BitStringDataType FB involves two events, INIT and REQ.

When the INIT event is triggered, the output values of
the BitStringDataType FB are set to predefined values. If the
output values are not the same as predefined values then the
test fails. This simple test ensures that FB can correctly handle
each of the supported data types.

Alternatively, when input data is provided, the REQ event
is triggered. The output values of the BitStringDataType FB
should correspond to the input values. For example, Out1
should be the same as In1. The CNF event is also triggered by
this test. This test ensures that the FB can correctly process
the input data and produce the correct output values. The
interface, ECC, INIT algorithm, and REQ algorithm for the
BitStringDataType function block are depicted in figure 1 a,
b, c, and d, respectively.

The BitStringDataType FB is an important testing tool
for ensuring that data types and their associations are
properly supported in Bit data types. By following the testing
procedure outlined above, developers can ensure that their
software systems can correctly handle different data types

Fig. 1. a) BitStringDataType FB interface b) ECC c) INIT Algorithm d) REQ
Algorithm.

20
23

 IE
EE

 3
2n

d
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

In
du

st
ria

l E
le

ct
ro

ni
cs

 (I
SI

E)
 |

97
9-

8-
35

03
-9

97
1-

4/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IS

IE
51

35
8.

20
23

.1
02

28
15

4

Authorized licensed use limited to: Lulea University of Technology. Downloaded on March 12,2024 at 14:37:52 UTC from IEEE Xplore. Restrictions apply.

and produce the expected output values.

2) IntegerDataType: The IntegerDataType function block
is used to test the support and association of different integer
data types, namely SINT, INT, DINT, LINT, USINT, UINT,
UDINT, and ULINT, in an IEC 61499 application. Testing of
the IntegerDataType function block can be done in manual
mode by triggering the INIT event. When this event is trig-
gered, the output values of Out1 to Out8 should be as follows:
10, 20, 30, 16#40, 16#50, 60, 70, and 80. This indicates
that the function block correctly supports and associates the
specified integer data types.

Another way to test the function block is to add values to
the input data and then trigger the REQ event. In this case,
the output values of Out1 to Out8 should have the same
corresponding values as the input data. For example, the value
of Out1 should be the same as the value of In1. This will also
trigger the CNF event. These testing procedures help ensure
that the IntegerDataType function block works correctly
and supports the specified integer data types as expected.
IntegerDataType FB interface, ECC, INIT algorithm and
REQ algorithm is shown in figure 2 a, b, c and d respectively.

3) RealDataType: RealDataType also tests similar like the
above test FBs. It is a function block designed for testing
the data type support and association with real data types,
REAL and LREAL. In the manual testing mode, triggering
the INIT event would produce the following output and cause
the INITO event to be fired: Out1 with a value of 10.100 and
Out2 with a value of 20.2000. Alternatively, as in the case
of the BitStringDataType and IntegerDataType test FBs, input
data values can be added and the REQ event can be triggered.
This would cause the output values to correspond to the input
values, such as Out1 being the same as In1. This would also
trigger the CNF event.

Fig. 2. a) IntegerDataType FB interface b) ECC c) INIT Algorithm d) REQ
Algorithm.

4) StringDataType: The StringDataType function block
(FB) is designed to test the support and association of the
STRING data type. In manual testing mode, initiating the INIT
event will produce the following output and trigger the INITO
event:

Out1 := ’STRING’
Alternatively, adding values to the input data and triggering

the REQ event will cause the output values to correspond
to the input values. For example, Out1 should match
the value of In1. This will also trigger the CNF event.

5) TimeDataType, DateDataType, TimeOfDayDataType and
DateAndTimeOfDayDataType: The TimeDataType, Date-
DataType, TimeOfDayDataType, and DateAndTimeOfDay-
DataType function blocks (FBs) test the data type sup-
port and associations for their respective data types (TIME,
LTIME, DATE, LDATE, TIME OF DAY, LTIME OF DAY,
DATE AND TIME, and LDATE AND TIME).

In a manual testing mode, triggering the INIT event will
produce output values, and the INITO event will be fired. For
TimeDataType, the output values are Out1 := T#90s15ms and
Out2 := LT#90s15ms542us15ns. For DateDataType, the output
values are Out1 := D#1970-01-01 and Out2 := LD#2177-11-
30. For TimeOfDayDataType, the output values are Out1 :=
TOD#00:00:00 and Out2 := LTOD#00:00:01. For DateAnd-
TimeOfDayDataType, the output values are Out1 := DT#1970-
01-01-00:00:00 and Out2 := LDT#1971-01-01-00:00:00.

Alternatively, input data can be added and the REQ event
can be triggered. The output values should correspond to the
input values, and the CNF event will be fired.

B. BoundCheckTest FB
BoundCheckTest FB 3 is a test function block that tests the

boundary support for each data type such as BYTE, WORD,
DWORD, LWORD, USINT, UINT, UDINT, ULINT, SINT,
INT, DINT, LINT, LREAL, TIME, DATE, TOD, STRING.
This function block can be used to check if the system under
test can handle the maximum and minimum values of the
specified data types correctly.

To test the BoundCheckTest function block, input data needs
to be added with necessary values and then the bound check
event for the specified data type should be triggered. The
output values of the event should be the input value plus one.
For example, if the input value is In1, the output value should
be Out1 = In1 + 1. This will also trigger the CNF event,
indicating that the test has been completed successfully.

The purpose of the BoundCheckTest is to ensure that the
system under test can handle the maximum and minimum
values of the specified data types without any errors or
unexpected behavior. This is important because it ensures the
reliability and robustness of the system, especially in situations
where the system is required to handle extreme values.

C. StanadardFunctionTest FB
The StandardFunctionTest FB is designed to evaluate the

support of IEC 61499 standard functions and their correspond-

Authorized licensed use limited to: Lulea University of Technology. Downloaded on March 12,2024 at 14:37:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. BoundCheckTest FB a) Interface b) ECC

ing association with input values. This FB is capable of testing
over 75 standard functions by providing specific events for
testing each function, which trigger the corresponding testing
algorithm for that particular function.

To test the StandardFunctionTest function block, suitable
input values are added to the input data, and the function event
is triggered. The output values should contain the result of the
corresponding function, which is then verified by the CNF
event.

For instance, if In1 is the input value, the output value
Out1 should be equal to the result of the function evaluated
using In1. Therefore, the CNF event confirms that the expected
output value is produced. Let’s consider the following example
to test the MUX function feature,

To test the Multiplexer (MUX) function, the MUX Func
event should be triggered, and the corresponding algorithm
will execute.

Fig. 4. a) Composite Function Block a) FB interface b) Basic FB connection
Diagram c) ECC d) INIT Algorithm and REQ Algorithm.

1 ALGORITHM MUX_Func IN ST:
2 (* Add your comment (as per IEC 61131-3) here
3 *)
4 MUX_Out:=MUX(int1,time1,time2,time3);
5 END_ALGORITHM

The MUX function is used to select one of several input
signals based on an index value. The input signals can be of
different types, such as time, integers, etc. The MUX function
returns the selected input signal based on the index value.
The MUX function can be tested by triggering the MUX Func
event and verifying that the output value matches the expected
output value.

If we provide input values int1=2, time1=TIME#1m30s,
time2=T#15s, and time3=T#2m30s, then the expected output

Fig. 5. shows the Function Block Interface of a) Adapter CFB b) AdapterCFB
consists of two sub-CFBs i.e. AdapterCFB Test1 and AdapterCFB Test2 c)
AdapterCFB Test1 consists of AdapterTest FB and an AdapterBF1 (basic FB)
d) AdapterCFB Test2 consists of AdapterTest FB and an AdapterBF1 (basic
FB), e & f) Represents the AdapterTest FB and its SOCKET and PLUG

Authorized licensed use limited to: Lulea University of Technology. Downloaded on March 12,2024 at 14:37:52 UTC from IEEE Xplore. Restrictions apply.

is MUX Out:=MUX(int1,time1,time2,time3) = 2m30s.

D. CompositeBlockTest

The CompositeBlock FB 4 is used to test the functionality of
composite function block support. The block has two events,
INIT and REQ, which can be triggered in manual testing mode
or by adding integer values to the input data and triggering
the REQ event.

When the INIT event is triggered, the output values should
be the same as the input values, and the INITO event is fired.
On the other hand, when the REQ event is triggered, the output
should be calculated as QO1 = QI1 + QI2 and QO2 = QI1 -
QI2. After the calculation is complete, the CNF event is fired.

In summary, the CompositeBlock function block tests the
functionality of composite function blocks by calculating the
output values based on the input values and triggering the CNF
event when the calculation is complete.

E. AdapterTest CFB

AdapterCFB 5 is a function block that tests the function-
ality of adapter support. The AdapterCFB is composed of
two basic function blocks, AdapterBFB1 and AdapterBFB2.
AdapterBFB1 has three output parameters, QO0, QO1, and
QO2, which are initialized to FALSE, 1, and ”AdapterBFB1”,
respectively. AdapterBFB2 also has three output parameters,
QO0, QO1, and QO2, which are initialized to TRUE, 2, and
”AdapterBFB2”, respectively.

The input values from AdapterBFB1 are transferred to
AdapterBFB2 and vice versa. This is made possible through
the use of an adapter, which connects the two function blocks.
When the AdapterCFB is triggered, the input values are set by
the tester, and the output values are calculated by the adapter
based on the input values.

In other words, AdapterCFB provides a way to connect
two function blocks that have different inputs and outputs by
mapping the inputs and outputs of one block to the inputs and
outputs of the other block, using an adapter.

III. XML-IMPORT/EXPORT COMPATIBILITY TEST BETWEEN
4DIAC V2.0.1 AND EAE V21.2

As a part of the 1-Swarm project, a hackathon was con-
ducted to analyze the compatibility of IEC 61499 between
4DIAC and Schinder Electric EcoStruxure (EAE). The ob-
jectives of the hackathon were to identify portability issues
between 4DIAC and EAE-IDE, as well as between Forte
and EcoRT-runtime, create a roadmap for addressing the
identified issues, and discuss potential solutions for creating a
single portable test application that can automatically test new
versions of IDE and runtime and certify some key attributes.
Some of the issues identified during the hackathon are given
below:

1) Issue: The EAE import dialog does not allow for the
selection of a < BitStringDataType.Basic.ZIP >
named file with a subdirectory IEC61499 and a metafile
named < BitStringDataType.Basic.export >. EAE

requires a specific extended import format which is not
described in the IEC61499 standard.
Recommendation: Develop a company conformance pro-
file or allow for the import of pure .fbt files to address
the issue.

2) Issue: After importing a 4diac .xml file in the 4DIAC
.BASIC.ZIP format, the algorithms are not imported.
EAE does not accept the CDATA format for the textual
contents of algorithms.
Recommendation: Modify EAE to accept CDATA format
as it offers user format overall lines, instead of compress-
ing the algorithm in one .xml line.

3) Issue: The compiler/parser does not generate an error
when a function with two parameters is called with only
one argument.
Recommendation: Modify the compiler/parser to generate
an error when an argument is missing.

4) Issue: EAE does not support data types CHAR, WCHAR,
and WSTRING. Only the STRING data type is supported.
Recommendation: Modify EAE to support character
string literals that directly represent a character or charac-
ter string value of data type CHAR, WCHAR, STRING,
or WSTRING as documented in the IEC61131-3 stan-
dard.

An automated testing approach for assessing the compatibil-
ity of software tools and runtime platforms with the IEC 61499
standard could be a promising direction for future research and
development. This approach could leverage service sequence
testing as an additional testing methodology to ensure compre-
hensive compliance with the IEC 61499 specification across
all integrated development environments (IDEs) and runtime
environments.

ACKNOWLEDGMENT

This work was sponsored, in part, by the H2020 project
1-SWARM co-funded by the European Commission (grant
agreement: 871743). Thank you Artur Fritz and Alois Zoitl for
their valuable contributions and participation in the hackathon
for the development of the IEC 61499 portability test suite.

REFERENCES

[1] “IEC 61499-1: Function Blocks Part 1: Architecture,” 2012.
[2] C. Gerber and H.-M. Hanisch, “Does portability of iec 61499 mean that

once programmed control software runs everywhere?” IFAC Proceedings
Volumes, vol. 43, no. 4, pp. 24–29, 2010.

[3] S. Patil, J. Yan, V. Vyatkin, and C. Pang, “On composition of mechatronic
components enabled by interoperability and portability provisions of iec
61499: A case study,” in 2013 IEEE 18th Conference on Emerging
Technologies & Factory Automation (ETFA). IEEE, 2013, pp. 1–4.

[4] C. Pang, S. Patil, C.-W. Yang, V. Vyatkin, and A. Shalyto, “A portability
study of iec 61499: Semantics and tools,” in 2014 12th IEEE International
Conference on Industrial Informatics (INDIN). IEEE, 2014, pp. 440–
445.

[5] A. Hopsu, U. D. Atmojo, and V. Vyatkin, “On portability of iec 61499
compliant structures and systems,” in 2019 IEEE 28th International
Symposium on Industrial Electronics (ISIE). IEEE, 2019, pp. 1306–
1311.

Authorized licensed use limited to: Lulea University of Technology. Downloaded on March 12,2024 at 14:37:52 UTC from IEEE Xplore. Restrictions apply.

