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Abstract—Gearbox faults can lead to significant damage and 

downtime in industrial machinery, resulting in substantial losses 

for manufacturers. Detection of faults in gears in the incipient 

state is essential to ensure safe and reliable operation of industrial 

machineries. In recent years, there has been an increasing interest 

in using machine learning algorithms to automate gearbox fault 

detection. This paper proposes a machine learning approach for 

identifying different categories of faults in a gearbox based on 

vibration signals. The proposed method was evaluated on a dataset 

of vibration signals collected from a two-stage gearbox under 

different operational conditions. The research is focused on 

developing a sequential neural network-based method for 

detecting multiple gear faults simultaneously. The results showed 

that the developed method achieved high training and validation 

accuracies and relatively low training and validation losses, 

indicating the model's ability to accurately detect and classify 

faults in gearboxes. The testing accuracies were also high, 

demonstrating the model's ability to generalize well to new data. 

The practical implications of the research are significant for 

improving the reliability and maintenance of gearboxes in various 

industrial applications. The developed method has the potential to 

reduce downtime, maintenance costs, and improve safety and 

efficiency. 

Keywords—gearbox fault detection, vibration analysis, 

sequential neural network, maintenance 

I. INTRODUCTION 

The problem of gearbox fault detection is a critical issue in 
industrial machinery maintenance. Gearboxes are essential 
components in many machines, and faults in gearboxes can lead 
to significant damage, downtime, and financial losses for 
manufacturers [1]. Identifying gearbox faults is crucial to 
prevent catastrophic failures, minimize downtime, and reduce 
maintenance costs. However, gearboxes are subjected to a range 
of wear and tear [2]. If left undetected, faults in gearboxes can 
escalate rapidly, leading to complete machine breakdown, loss 
of productivity, and increased maintenance costs. Early 
detection and repair of gearbox faults can prevent these issues 
and ensure optimal machine performance [3]. 

Existing methods for gearbox fault detection include visual 
inspection, acoustic analysis [4], and vibration analysis [3]. 
Visual inspection involves physically inspecting the gearbox for 
signs of wear, damage, or other faults. This method requires 
significant expertise and can only detect faults that are visible to 
the naked eye and reduces the operation capacity in order to 
perform such inspection. However, recent studies have proposed 
combining visual inspection with machine learning techniques 
to improve the accuracy and efficiency of fault detection [5]. 

Acoustic analysis involves measuring and analysing the 
sound generated by the gearbox to detect potential faults. This 
method is limited in its ability to distinguish between different 
types of faults and is susceptible to environmental noise. 
Nevertheless, studies have shown that acoustic analysis can be 
effective in detecting certain types of gearbox faults [6]. 

Vibration analysis is currently the most widely used method 
for gearbox fault detection. Vibration monitoring is a technique 
used to detect faults in gears by analysing the vibrations they 
produce. Healthy and faulty gears generate different vibration 
signals, which can indicate the presence of faults such as gear 
tooth wear, gear tooth cracks, and pitting. Various techniques 
such as time domain, frequency domain, and time-frequency 
domain techniques are used to analyse these vibration signals. 
The frequency domain technique involves using the Fast Fourier 
Transform (FFT) of the time domain signal to evaluate the 
condition based on the signal's frequency content. However, 
vibration signals from gears are considered non-stationary and 
non-periodic, making it challenging to detect multiple gear 
faults using conventional FFT analysis [7]. To overcome this 
limitation, sophisticated signal processing method, such as 
wavelet analysis, can be used for feature extraction from the 
noisy gear signal. Vibration analysis requires advanced signal 
processing, feature extraction and machine learning techniques 
for accurate and reliable predictions of multiple faults 
simultaneously [8]. 
 

The objective of this paper is to develop a method for 
analysing vibration signals to monitor the health of industrial 
gear box systems and enable multiple fault detection 
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simultaneously. The proposed methodology involves data 
collection, feature extraction, and training a machine learning 
model to predict the state of the gear condition. The 
effectiveness of the proposed approach is evaluated on a 
dataset of vibration signals collected from a two-stage 
gearbox under different operational conditions. The paper 
presents the results of the study, demonstrating the accuracy 
and reliability of the proposed approach in identifying 
different fault categories, including normal working 
condition, surface wear, chipped, cracked, and tooth missing. 
This paper provides a useful framework for gearbox fault 
detection that can improve the reliability and safety of 
industrial machinery.  

The paper is structured as follows, in Section II, the 
framework developed for this study is described. Section III 
discusses the case study and the application of the framework 
to the case. In Section IV, the modelling results and 
discussion are presented. Finally, Section V concludes of the 
paper. 

II. METHOD 

Gearbox fault detection using machine learning involves the 
use of algorithms to automatically identify the presence of 
faults in gearbox systems from vibration signals. The general 
framework for gearbox fault detection using machine learning 
involves the two key steps which are briefed explained in this 
section. 

A. Data Collection and Feature Extraction: 

This step involves collecting the vibration signals from the 
gearbox system using sensors and processing the collected data 
for analysis. The following are the actions involved in this step: 

1) Data collection and preprocessing: data collection 

involves the collection of the vibration signals from the gearbox 

system using sensors and are most commonly mounted on the 

gearbox housing or on the shaft.  Preprocessing involves 

cleaning and preparation of the collected data for analysis. The 

data may be filtered, normalized, and segmented to remove 

noise and artifacts.  

2) Feature extraction: involves the extraction of relevant 

features from the vibration signals. The extracted features 

should capture the underlying fault patterns in the data. There 

are several types of features that can be extracted from vibration 

signals for gearbox fault detection such as, time domain 

features [9] describing the behavior of the vibration signal over 

time, mean, standard deviation, kurtosis, and skewness are 

examples; frequency domain features [10] describing the 

behavior of the vibration signal in the frequency domain, 

spectral density, power spectrum, and Fourier coefficients are 

examples; time-frequency domain features [11] describing the 

behavior of the vibration signal in both the time and frequency 

domains wavelet transform, short-time Fourier transform, and 

Gabor transform are examples and finally statistical features 

[12] describing the statistical properties of the vibration signal 

include entropy, correlation, and covariance are examples. 

3) Feature ranking and feature selection: involves the 

identification and selection of the most relevant features for the 

fault detection model. Feature ranking involves the 

computation of a ranking score for each feature, based on its 

ability to distinguish between the different fault categories. A 

higher ranking score indicates that the feature is more important 

in distinguishing between fault categories. Different feature 

ranking methods such as ANOVA, ReliefF, Extra Trees 

Classifier, and Correlation-based feature selection etc., can be 

used to rank the features. Feature selection, on the other hand, 

involves the selection of the top-ranked features from the 

feature ranking step. The selected features should have high 

discriminatory power and low redundancy. The goal of feature 

selection is to reduce the dimensionality of the feature space, 

thereby improving the performance and interpretability of the 

fault detection model. 

B. Machine Learning Model Development 

This step involves developing a machine learning model to 
detect faults based on the extracted features. The following are 
the actions involved in this step: 

1) Model selection: involves selecting the appropriate 

machine learning algorithm for the problem at hand. There are 

several types of machine learning models that can be used for 

gearbox fault detection, including, supervised learning models 

- which learn from labeled data and can be used to classify the 

data into different fault categories, Decision Trees, Random 

Forests, Support Vector Machines (SVMs)  [13]–[15], and 

Neural Networks [16] are examples; unsupervised learning 

models - these models learn from unlabeled data and can be 

used to identify patterns and anomalies in the data, K-Means 

Clustering, DBSCAN clustering [17]–[19], Principal 

Component Analysis (PCA) [20], and Autoencoders [21] are 

examples; semi-supervised learning models - these models 

learn from a combination of labeled and unlabeled data and can 

be used when only a small amount of labeled data is available, 

self-training [22] and co-training models [23] are examples; 

transfer learning models - these models learn from a pre-trained 

model on a related task and can be used when there is a limited 

amount of labeled data available for the specific application, 

fine-tuning [24] and domain adaptation [25] are examples.  
The choice of model for gearbox fault detection depends on 

several factors, including the amount and quality of labelled 
data, the complexity of the underlying fault patterns, and the 
desired performance metrics. A common approach to model 
selection is to evaluate multiple models using a validation set 
and select the one with the best performance. Alternatively, an 
ensemble of multiple models can be used to improve the 
accuracy and robustness of the fault detection system. 

2) Model training: involves training the selected machine 

learning algorithm using the labeled data. The labeled data 

consists of the extracted features and the corresponding fault 

labels. 

3) Model validation: involves evaluating the 

performance of the trained model on a validation set. The 

purpose of model validation is to estimate the performance of 

the model on an independent dataset that was not used for 

training the model. 
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4) Model testing: involves evaluating the performance of 

the trained model on new, unseen data. The purpose of model 

testing is to assess the generalization capability of the model, 

i.e., how well it can predict the outcome for new data that it has 

not seen before. 

III. CASE STUDY 

In this case study a machine learning-based model is 
developed for analysing vibration signals to monitor the health 
of gear box in the industrial setup based on the method defined 
in section II. Gear boxes are prone to defects and failures, which 
may lead to various undesirable consequences. Therefore, real-
time monitoring techniques are essential to mitigate the risk of 
failures, reduce machinery downtime, and increase productivity 
by performing efficient maintenance strategies. Vibration 
signals are widely used for fault detection in 
industrial/manufacturing machinery, making them the focus of 
this case study.  

A. Data Collection and Feature Extraction: 

The dataset [26] used in this study consists of vibration 
signals collected from a two-stage gearbox under different 
operational conditions captured using a portable data 
acquisition system of National Instruments (NI, 356A01). The 
vibration data used for the present study focuses on the 
planetary gearbox. Each vibration signal was recorded in three 
directions (x, y, z), for a period of five minutes, and with a 
sampling frequency of 10 kHz. The first operating condition 
included a motor speed of 1500 rpm with a load of 10Nm. The 
second operating condition in which the data were recorded had 
a motor speed of 2700 rpm with a load of 25Nm. The features 
used in the study were extracted from time domain, frequency 
domain, wavelet analysis and time-frequency domain. The 
features used for this study includes peak-to-peak, kurtosis, 
crest factor, skewness, standard deviation, variance, energy 
spectrum, velocity spectrum (1x, 2x, 3x), Fast Fourier 
Transform (FFT) (1x,2x,3x,4x), Scale Averaged Wavelet 
Power (SAWP), Laplace Wavelet Kurtosis, M6A, M8A, 
Energy Operator and spectral entropy. The features were 
extracted for the vibrations signal collected across the three 
directions individually. Five classes of gear state were 
monitored for this study: - Normal/healthy, surface wear, 
cracked tooth, chipped and tooth missing. Each of the state had 
10,000 signals for which the above-mentioned features were 
estimated. 

This study uses a tree classifier to identify the most 
important features. Here, a total of 78 features were extracted 
from the vibration signals, with 26 features extracted from each 
of the x, y, and z directions. These features were then fed into 
the tree classifier for feature ranking, which analyzed the 
features and ranked them according to their importance. After 
the analysis, the top 60 features were selected based on their 
feature ranking score and were used as input for the modelling 
stage. By selecting the top features, the model can focus on the 
most important information in the dataset, reducing the impact 
of irrelevant or redundant features, and improving the overall 
performance of the model. 

B. Machine Learning Model Development 

Sequential neural networks are employed for this study as 
they can learn from large amounts of data and have been shown 
to achieve state-of-the-art results in various applications. Also, 
they can effectively capture complex patterns and dependencies 
in data. This makes them a suitable choice for the task of 
gearbox fault detection, where large amounts of vibration signal 
data are available for training. 

The sequential neural network model has four hidden layers 
that are stacked one after the other. The layers are fully 
connected or dense layers. The input layer has 512 units with a 
rectified linear unit (ReLU) activation function and uses L2 
regularization with a strength of 0.001. The dropout layer with 
a rate of 0.2 is used to prevent overfitting by randomly setting 
20% of the input units to 0 at each update during training time. 
The following layers are also dense layers with ReLU 
activation functions and have 256, 128, and 64 units, 
respectively. All of these layers use L2 regularization with a 
strength of 0.001 and dropout with a rate of 0.2. The output 
layer has 5 units (one for each gear state) with a softmax 
activation function to produce a probability distribution over 
the classes. The hyper parameter learning rate was optimized 
using the Adam optimizer, and an early stopping criterion was 
used to prevent overfitting or underfitting. The model was 
evaluated on the loss function 
‘sparse_categorical_crossentropy’ since the labels used in the 
study were integers.  

The study utilized a data set consisting of 50000 x 60 
samples, where each gear state including faults had a size of 
10000 x 60 samples for training the model. The data set is 
normalized prior to being fed into the model. The resulting data 
set was then split into training and testing sets in an 90:10 ratio. 
The model was evaluated using 5-fold cross-validation on the 
training set, which contained 45000 samples. Finally, 10 
percent of the data set was reserved for the final testing of the 
model. A learning rate schedule function lr_schedule() is used 
to adjust the learning rate during training. This function will 
keep the learning rate constant for the first 10 epochs, and then 
decrease it exponentially with a decay rate of 0.1. The code also 
sets up an early stopping criterion using the Early Stopping 
callback from Keras. This will monitor the validation loss 
during training and stop training if the validation loss has not 
improved during consecutive 5 epochs. This also helps prevent 
overfitting and ensures that the model does not continue 
training if it has already reached its optimal performance on the 
validation set. When using K-fold cross validation, this code 
will be applied within each fold of the cross-validation loop. 
Each fold will use a different subset of the data for training and 
validation, but will use the same initial learning rate, optimizer, 
learning rate schedule, and early stopping criteria. 

IV. RESULTS AND DISCUSSION 

     The developed model based on sequential neural network 
and feature selection achieved promising results for the task of 
gearbox fault detection. The model was trained and tested on 
two different RPM (revolutions per minute) values, 1500 and 
2700 RPM. Fig. 1. represents the results of a 5-fold cross-
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validation study conducted on these two operating conditions 
(RPMs) of Gear.  
 

     For the 2700 RPM operating condition, the training accuracy 
ranged from 93% to 94% from fold 1 to fold 5. The training loss 
ranged from 0.3348 to 0.3416. The validation accuracy ranged 
from 90% to 93%. The validation loss ranged from 0.2969 to 
0.365 and the testing accuracy ranged from 90% to 91%. The 
testing loss ranged from 0.3536 to 0.3647. For the 1500 RPM 
operating condition, the training accuracy ranged from 95% to 
96% from fold 1 to fold 5. The training loss ranged from 0.3631 
to 0.3861 and the validation accuracy ranged from 91% to 96%. 
The validation loss ranged from 0.2967 to 0.4289 and the 
testing accuracy ranged from 91% to 92%. The testing loss 
ranged from 0.408 to 0.4184. 
      Fig. 2 shows the training and validation loss during each 
epoch for fold 1 for 1500 RPM. The training loss starts from a 
relatively high value of 1.2 and decreases over time, reaching a 
final value of 0.4. On the other hand, the validation loss starts 
from a value of 0.9 and decreases over time, reaching a final 
value of 0.5. This indicates that the model is learning to 
generalize well to new data, as the training and validation loss 
both decrease over time. Fig. 2 suggest that the model is 
performing well on the testing set, with testing accuracy 
ranging from 90% to 91%. Additionally, the testing loss is 
generally lower than the training and validation loss, indicating 
that the model is not overfitting to the training data. 
 

Fig. 2. Training and validation loss in each epoch for fold 1 

 
 

 
     Table. I. shows the final model results after the cross 
validation. The training accuracy and loss indicate how well the 

model was able to fit the training data and the model achieved 
higher accuracy and lower loss on the 1500 RPM training data 
(92.55% accuracy and 0.3861 loss) compared to the 2700 RPM 
training data (91.47% accuracy and 0.3146 loss). The validation 
accuracy and loss indicate how well the model was able to 
generalize to new data and the model achieved higher 
validation accuracy on the 1500 RPM data (96.39% accuracy 
and 0.2967 loss) compared to the 2700 RPM data (93.89% 
accuracy and 0.2848 loss). This suggests that the model was 
better at generalizing to new data at the lower RPM. The testing 
accuracy and loss indicate how well the model performed on a 
completely new and unseen dataset. The model achieved higher 
testing accuracy on the 1500 RPM data (91.34% accuracy and 
0.407 loss) compared to the 2700 RPM data (90.61% accuracy 
and 0.3535 loss). This suggests that the model was better at 
predicting the outcome of new data at the lower RPM. 

TABLE I.  TRAINING AND TESTING PERFORMANCE  

 
      The results of the developed method for fault detection have 
demonstrated its effectiveness in diagnosing faults in 
gearboxes. The high training, validation accuracies, and 
relatively low training and validation losses, indicate that the 
model can accurately detect and classify faults in the gearbox. 
The testing accuracies, although slightly lower than the training 
and validation accuracies, are still relatively high and 
demonstrate that the model can generalize well to new data and 
detect five stages of gear heath status simultaneously. The 
practical implications of these findings are significant for 
improving the reliability and maintenance of gearboxes in 
various industrial applications. By accurately detecting various 

Rpm 1500 2700 

Training accuracy 93% 91% 

Training loss 0,3861 0,3146 

Validation accuracy 96% 94% 

Validation loss 0,2967 0,2848 

Testing accuracy 91% 91% 

Testing loss 0,407 0,3535 

Fig. 1. Five-fold cross-validation results for 2700 RPM (left) and 1500 RPM (right) 
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faults in gearboxes, maintenance personnel can proactively 
address the underlying issues before they become more severe 
and potentially lead to catastrophic failures. This can help to 
reduce downtime and maintenance costs and improve the 
overall reliability and safety of machinery. Additionally, the 
ability to diagnose faults in gearboxes using a machine learning 
approach can potentially reduce the need for manual inspection 
and diagnosis, saving time and resources. Overall, the 
developed method for fault detection has the potential to 
improve the reliability and maintenance of gearboxes in various 
industrial applications, leading to improved safety, reduced 
costs, and increased efficiency. 

V. CONCLUSION 

In conclusion, this paper presents the development of a 
comprehensive method for fault detection in gearboxes using 
vibration analysis. The proposed framework includes several 
stages including feature extraction, and fault diagnosis using 
machine learning models, which aim to identify and diagnose 
multiple faults accurately and effectively. The proposed method 
was applied to a case study involving a gearbox data, and the 
results demonstrated the effectiveness of the developed 
framework in detecting and diagnosing faults in gearboxes. 

The developed sequential neural network with feature 
selection has demonstrated promising results in the detection of 
faults in gearboxes. The model achieved high training and 
validation accuracies and relatively low training and validation 
losses, indicating that it can accurately detect and classify faults 
in gearboxes. The model also performed well on the testing set, 
demonstrating good generalization ability. 

Overall, this paper provides a valuable contribution to the 
field of fault detection in gearboxes, and the developed 
framework has the potential to improve the performance and 
reliability of various systems that rely on gearboxes. The future 
research in this area can focus on further enhancing the proposed 
framework's accuracy and efficiency by further optimising the 
current model, enhancing the dataset and by integrating other 
advanced techniques, such as machine learning and artificial 
intelligence. 
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